B e A U A L T T e B S e B s e e e]
Application System /400™ SC21-9658-1

Programming:
Data Management Guide

|

l

Second Edition (September 1989)

This major revision makes obsolete SC21-9658-0 and Technical Newsletter SN21-9118. See “About This
Manual” for a summary of major changes to this edition. Changes or additions to the text and illustrations
are indicated by a vertical line to the left of the change or addition. Changes are periodically made to the
information herein; any such changes will be reported in subsequent revisions or technical newsletters.

This edition applies to Release 2 Modification Level 0 of the IBM Operating System/400 Licensed Program
(Program 5728-SS1) and to all subsequent releases and modifications until otherwise indicated in new edi-
tions or technical newsletters.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM’s licensed program may be used. Any func-
tionally equivalent program may be used instead.

The numbers at the bottom right of illustrations are publishing control numbers and are not part of the tech-
nical content of this manual.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to your IBM-approved remarketer.

This publication could contain technical inaccuracies or typographical errors. A form for readers’ com-
ments is provided at the back of this publication. If the form has been removed, comments may be
addressed to IBM Corporation, Information Development, Department 245, Rochester, Minnesota, U.S.A.
55901. IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Application System/400, AS/400, Operating System/400, OS/400, C/400, COBOL/400, and RPG/400 are
trademarks of the International Business Machines Corporation.

Proprinter and 400 are registered trademarks of the International Business Machines Corporation.

Personal System/55 and PS/55 are trademarks of the International Business Machines Corporation in the
U.S.A. and/or other countries.

© Copyright International Business Machines Corporation 1988, 1989. All rights reserved.

About This Manual

Data management support is the portion of the operating system that allows an
application to work with files. A file is a fundamental object on the Operating
System/400. Files allow data that is external to an application program to be read
from or written to devices attached to the system. Files come in several varieties or
types. For example, there are database files, printer files, and files used to commu-
nicate with other systems. Each file type has its own set of unique characteristics
that determines how a file of that type can be.used and what capabilities a file of
that type can provide. In addition to these unique characteristics, there is another
set of characteristics that are common to all file types. Therefore, to be able to use
files to their full capabilities, it is necessary that you understand both the common
characteristics of all file types and the unique characteristics of the file types you
plan to use.

This manual may refer to products that are announced but are not yet available.
This manual follows the convention that he means he or she.

This manual contains small programs which are furnished by IBM as simple exam-
ples to provide an illustration. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, servicea-
bility, or function of these programs. All programs contained herein are provided to
you “AS IS”. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

Who Should Use This Manual

This manual is intended primarily for the application programmer. This manual
should also be useful for those responsible for tailoring their system to use double-
byte data with the data management file support.

What You Should Know

Before using this manual, you should be familiar with general programming con-
cepts and terminology, and have a general understanding of the AS/400 system and
0S/400 operating system.

Roadmap to This Manual and Other Related Manuals

Because this manual describes the fundamental structure and concepts of the data
management support on the system, it should be the first manual you read if you are
unfamiliar with 0S/400 data management. In particular, the first chapter should be
the starting point. Once the concepts in that chapter are understood, you can
proceed to read about the details necessary to develop any application. These
details may be in this manual or in other manuals in the programming library. For
example, a programmer writing an interactive application that updates a customer
order file and prints orders would read the display, printer and spool chapters in
this manual; and for information about support available for the customer order file,
would read the Database Guide.

After you understand what data management support provides, you can proceed to

learn how to use that support. The how-to aspect of data management is covered in
two other groups of manuals: the high-level language manuals and the manuals

© Copyright IBM Corp. 1988, 1989 About This Manual iii

that describe the various tools on the system for describing, creating, and main-
taining files.

The high-level language manuals describe how to interact with the data manage-
ment support. For example, they describe the syntax for extracting file descriptions
from the system and including them in the program, and how to code a read opera-
tion using a keyed access path.

The tools manuals are similar to the language manuals in that the syntax of using
data management is described. For example, the DDS Reference describes the
syntax for creating field, record, and file descriptions that will be associated with a
file; the CL Reference describes the syntax for the command that creates the file
using the DDS file description.

Where appropriate, this manual refers you to the manuals in the other two groups.

How This Manual Is Organized
This manual is divided into four parts:

Part 1, “Introduction”

Part 2, “Common File Support”
Part 3, “Device File Support”
Part 4, “Appendixes”

After the introduction, Part 2 describes characteristics that are common to all files,
regardless of type. The information in these chapters is of interest to you as a pro-
grammer, because the common file characteristics set the general framework by
which an application and the file it uses interact. The unique file characteristics
then fill in this general framework.

Part 3 provides you with detailed information about display, printer, tape, and
diskette files and how they can be used in a program.

Part 4 covers double-byte character set support, and additional information on such
items as the format of the feedback areas and values for return codes (both of which
are means by which data management communicates its status to the program).
Also included is information about edit codes used to edit printed and displayed
output and information on System/36-compatible display management.

In the back of this manual are a glossary and an index. Use the glossary to find the
meaning of an unfamiliar term. Use the index to look up a topic and see on which
pages the topic is covered.

Detailed descriptions of other file types do not appear within this publication. Refer

to “Related Printed Information” on page vi to determine where equivalent informa-
tion can be found for other file types.

iv Data Management Guide

 How This Manual Has Changed

|

|
l
l
I
l
l

information added to this manual includes:

e Display support: automatic recovery for display errors.

¢ Printer support: new printers, changes to several parameter values, tables on
specific parameter support by printer types.

* New tape support.

¢ Get-attributes operation information.

* System/36-compatible display management.

In addition, there are miscellaneous changes throughout the manual. Changes are
noted by a vertical line to the left of the text.

Related Online Information

The following online information is available on the AS/400 system. After pressing
the Help key on any menu, you can press the Help key a second time to see an
explanation of how the online information works, including the index search func-
tion. You can press either the Help key or F1 for help.

Help for Displays

Index Search

You can press the Help key on any display to see information about the display.
There are two types of help available:

Field
Extended

Field help explains the field on which the cursor is positioned when you press the
Help key. For example, it describes the choices available for a prompt. If a system
message appears at the bottom of the display, position the cursor on the message
and press the Help key to see information about the cause of the message and the
appropriate action to take.

Extended help explains the purpose of the display. Extended help appears if you
press the Help key when the cursor is outside the areas for which field help is avail-
able.

To exit the online information, press F3 (Exit). You return to the display on which
you pressed the Help key.

Index search allows you to specify words or phrases that identify the information
that you want to see. To use index search, press the Help key, then press F11
(Search index). You can also use index search by entering the Start Index Search
(STRIDXSCH) command on any command line or by selecting option 2 on the User
Support and Education menu.

About This Manual V

Help for Control Language Commands
To see prompts for parameters for a control language command, type the command,
then press F4 (Prompt) instead of the Enter key. To see extended help for the
command, type the command on any command line and press the Help key.

Online Education

AS/400 online education provides training on a wide variety of topics. To use the
online education, press F13 (User support) on any system menu to show the User
Support menu. Then select the option to use online education.

Question-and-Answer Function
The question-and-answer (Q & A) function provides answers to questions you may
have about using the AS/400 system. To use the Q & A function, press F13 (User
support) on any system menu to show the User Support menu. Then select the
option to use the question-and-answer function. You can also use the question-and-
answer function by entering the Start Question and Answer (STRQST) command on
any command line.

Related Printed Information

Following is a list of related manuals that the Data Management Guide refers to.
The manuals are listed with their full title and base order number. When these
manuals are referred to in this manual, a shortened version of the title is used.

* Application Development Tools: Character Generator Utility User’s Guide,
SC09-1170

This manual provides information about using the Application Development
Tools character generator utility (CGU) to create and maintain a double-byte
character set (DBCS) on the system.

® Application Development Tools: Screen Design Aid User’s Guide and
Reference, SC09-1171

This manual provides information about using the Application Development
Tools screen design aid (SDA) to design, create, and maintain display formats
and menus.

e Application Development Tools: Source Entry Utility User’s Guide and
Reference, SC09-1172

This manual provides information about using the Application Development
Tools source entry utility (SEU) to create and edit source members.

* Communications: Distributed Data Management User’s Guide, SC21-9600

This manual provides information about remote file processing. It describes
how to define a remote file to 0S/400 DDM (distributed data management), how
to create a DDM file, what file utilities are supported through DDM, and the
requirements of 0S/400 DDM as related to other systems.

e. Communications: Programmer’s Guide, SC21-9590

This manual provides the information needed to write application programs that
use AS/400 communications and ICF files. It also contains examples of commu-
nications programs and describes return codes.

vi Data Management Guide

Communications: User’s Guide, SC21-9601

This manual provides communications information that is common among the
AS/400 communications support functions, such as setting and changing values;
communications configuration information, such as defining lines, controllers,
and devices; information on handling communications errors; and information
on defining and using display station pass-through.

Device Configuration Guide, SC21-8106

This manual provides information on how to do an initial configuration and how
to change that configuration. It also contains conceptual information about
device configuration.

Languages: System/36-Compatible COBOL User’s Guide and Reference,
SC09-1160

This manual provides information about using COBOL in the System/36 environ-
ment on the AS/400 system. It provides information on how to program in
COBOL on the AS/400 system like a System/36 and how to use existing
System/36 COBOL programs.

Languages: System/36-Compatible RPG Il User’s Guide and Reference,
SC09-1162

This manual provides programming guide information for the RPG Il language
on the AS/400 system. It is intended for people who have a basic understanding
of data processing concepts and of the RPG Il language. The guide portion
explains how to design, code, enter, compile, test, and run RPG Il programs.
The manual includes the RPG program cycle, the valid entries for each column
of each RPG specification form and the differences between the way RPG II pro-
grams run on System/36 and the way they run on the AS/400 system. In addi-
tion, differences between compiling in the System/36 environment and the
AS/400 environment are identified at the compiler level only.

Office: OfficeVision/400 Word Processing User’s Guide, SC21-9618

This manual provides detailed information on how to use the word processing
functions of AS/400 Office.

Programming: Backup and Recovery Guide, SC21-8079

This manual provides information about the different media available to save
and protect system data, as well as a description of how to record changes
made to database files and how that information can be used for system
recovery and activity report information.

Programming: Command Reference Summary, SC21-8076

This manual provides quick reference information about the structure of the
commands.

Programming: Concepts and Programmer’s Guide for the System/36
Environment, SC21-9663

This manual provides information identifying the differences in the applications
process in the System/36 environment on the AS/400 system.

This manual-helps the user understand the functional and operational differ-
ences (from a System/36 perspective) when processing in the System/36 envi-
ronment on the AS/400 system.

About This Manual Vii

viii

Programming: Control Language Programmer’s Guide, SC21-8077

This manual provides a wide-ranging discussion of programming topics,
including: a general discussion of objects and libraries, control language (CL)
programming, predefined and impromptu messages and message handling, and
application testing.

Programming: Control Language Reference, SBOF-0481

This set of manuals provides a description of the control language (CL) and its
commands. Each command is defined including its syntax diagram, parame-
ters, default values, and keywords.

Programming: Database Guide, SC21-9659

This manual provides a detailed discussion of the database structure, including
information on how to create, describe, and manipulate database files on the
system.

Programming: Data Description Specifications Reference, SC21-9620

This manual provides detailed descriptions of the entries and keywords needed
to describe database files (both logical and physical) and certain device files
(for displays and printers) external to the user’s programs.

Programming: Office Services Concepts and Programmer’s Guide, SC21-9758

This manual provides information about writing applications that use Office
functions. The manual introduces AS/400 Office application program interfaces
(APIs). The manual also includes an overview of directory services, document
distribution services, document library services, security services, word pro-
cessing services, and information on finding new ways to integrate your applica-
tions with AS/400 Office.

Programming: Security Concepts and Planning, SC21-8083

This manual provides information about general security concepts and planning
for security on the system.

Programming: System Reference Summary, SC21-8104

This manual provides quick reference information when working with the
system. This manual contains summaries of information such as system values
and 0S/400 DDS keywords.

Programming: Work Management Guide, SC21-8078

This manual provides information about how to create a work management
environment and how to change it.

System Operations: Operator’s Guide, SC21-8082

This manual provides information about how to use the system unit operator
panel, send and receive messages, respond to error messages, start and stop
the system, use the display station function keys, control devices, and also
process and manage jobs on the system.

Data Management Guide

Utilities: Interactive Data Definition Utility User’s Guide, SC21-9657

This manual provides detailed information on how to use 0S/400 IDDU (interac-
tive data definition utility) to describe data dictionaries, files, and records to
your system.

Utilities: Sort User’s Guide and Reference, SC09-1164

This manual provides information about using the sort function for identifying
input and output files, specifying sort options, utilizing effective sort run time,
and identifying double-byte character set (DBCS) sort information.

About This Manual X

X Data Management Guide

‘Contents

Part 1. Introduction

Part 2. Common File Support

Chapter 1. FileProcessing 1-1
General Information about Files L 1-1
File Types 1-2
Database Files 1-2
Device Files 1-3
Distributed Data Management (DDM) Files 1-5
Save Files 1-7
Contrast among File Types 1-8
File Descriptions 1-8
Constructing File Descriptions L. 1-11
Externally Described Data o o 1-12
Program-Described Data 1-13
Changing a File Description 1-14
Data Management Operations Overview 1-15
Security Considerations 1-19
File Object Authority 1-19
File Data Authorities 1-19
Authorities Required for File Operations 1-20
Specifying Authorities when CreatingFiles 1-20
Sharing Filesinthe Samedob L. 1-21
Open Considerations for Files SharedinaJdob 1-22
Input/Output Considerations for Files Sharedinadob 1-23
Close Considerations for Files SharedinadJdob 1-23
Allocating File Resources 1-23
Opening Files 1-25
Detecting File Description Changes 1-28
Open and I/0 Feedback Area 1-29
Error Handling 1-30
Messages and Message Monitors L 1-31
Major/Minor Return Codes 1-32
Actions for Error Recovery 1-33
Related Informationon File Types 1-36
Chapter 2. Overrides and File Redirection 2-1
Overriding Files e 2-1
Applying Overrides when Using High-Level Language Programs 2-3
Call Level with Override Commands 2-5
Using a Generic Override for Printer Files 2-12
Applying Overrides when Compiling a Program 2-14
Effect of Overrides on Some System Commands 2-15
Deleting Overrides 2-17
Displaying Overrides 2-18
File Redirection 2-24
Overriding Program Device Entries 2-31
Overriding Remote LocationName 2-31

© Copyright IBM Corp. 1988, 1989 Contents Xi

Overriding Session Attributes oL L. 2-32

Overriding Remote Location Name and Session Attributes 2-32
Applying OVRICFDEVE Command 2-32
Deleting Device Entry Overrides 2-35
Displaying Device Entry Overrides 2-35
Chapter 3. CopyingFiles 3-1
Basic Copy Function 3-6
File Types 3-6
Record Sequence 3-6
Resending Copy File Completion Message 3-8
Monitoring for Copy Errors 3-8
Monitoring for Zero Records in the From-File, ... 3-9
Creating a Duplicate To-File Member 3-11
Adding and Replacing Records (MBROPT Parameter) 3-11
Creating the To-File (CRTFILE Parameter) 3-14
Selecting Members/Labels to Copy
(FROMMBR/FROMLABEL/TOMBR/TOLABEL Parameter) 3-15
Adding Memberstothe To-File 3-17
Selecting Recordsto Copy 3-17
Selecting Records Using a Specified Record Format Name (RCDFMT
Parameter) 3-18
Selecting Records Using Relative Record Numbers (FROMRCD/TORCD
Parameters) 3-18
Selecting Records Using Record Keys (FROMKEY/TOKEY Parameters) ... 3-19
Selecting a Specified Number of Records (NBRRCDS Parameter) 3-20
Selecting Records Based on Character Content (INCCHAR Parameter) ... 3-21
Selecting Records Based on Field Value (INCREL Parameter) 3-21
Copying Deleted Records (COMPRESS Parameter) 3-22
Printing Copied and Excluded Records (PRINT/OUTFMT Parameters) 3-23
Copying between Different Database Record Formats (FMTOPT Parameter) . 3-24
ConversionRules 3-26
Adding or Changing Source File Sequence Number and Date Fields
(SRCOPT/SRCSEQ Parameters) 3-27
Copying Device Source Files to Database Source Files 3-27
Copying Database Source Files to Device Source Files 3-27
Copying Database Source Files to Database Source Files 3-27
Recoverable Error Considerations (ERRLVL Parameter) 3-28
Position Error Considerations 3-29
Allocation Considerations 3-29
Authority . . . 3-30
Performance 3-30

Part 3. Device File Support

xii

Chapter 4. Display Device Support 4-1
Objects that Support Displays 4-3
Display Device Descriptions 4-3
Display Device Files 4-4
Concepts of Display Files 4-5
Files . . . 4-5
Record Formats 4-6
Indicators 4-7
Fields e 4-7
Basic Display FileUse 4-9

Data Management Guide

Working withOne Record 000 4-10

Working with More thanOne Record 4-10
Defining FunctionKeys 4-11
Getting Messagesonthe Display, .. 4-11
A Small Application 4-12
Examples of Screen Definitions L L 4-16
Display File Operations 4-20
Operationson Files 4-21
Operations on Record Formats 4-24
Subfiles 4-31
Overview of Subfile-Program Operations 4-35
Operationson Subfiles 4-36
Controlling the Appearance of Subfiles 4-39
Describing Subfiles UsingDDS 4-42
Example of Subfile DDS and Program Logic 4-47
Considerations When Using Subfiles 4-50
File Definition Considerations 4-64
DFRWRT (Defer Write) Parameter 4-64
RSTDSP (Restore Display) Parameter 4-64
Field Definition Considerations 4-67
Field Attribute Characters 4-67
Specifying Display Attributes 4-67
Using Color Attributes 4-68
Specifying Validity-Checking Functions 4-68
Limitations on the Number of Input-Capable Fields 4-70
Negative Numeric Input Data Considerations 4-71
Right-to-Left Cursor Support 4-71
Using Alternative Character Sets and Code Pages 4-72
Editing Output Fields 4-75
Indicators and Condition Names 4-77
Specifying Screen Size Condition Names 4-78
Specifying Function Keys 4-79
CAand CFKeywords 4-79
Specifying Alternative Help, Page Up, and Page Down Keywords 4-80
Command Key Validity Considerations 4-81
Active Record Format Table 4-82
Placing Records onthe Display 4-83
Positioning Record Formats L . 4-87
Controlling Display Functions on Output Operations 4-90
Using the OVERLAY and ERASE Keywords 4-92
Using the SLNO Keyword 4-92
Using the Clear Line (CLRL) Keyword 4-95
Using the ALWROL Keyword 4-98
Using the PUTOVR, OVRDTA, and OVRATR Keywords 4-100
Using the PUTRETAIN Keyword 4-104
Using the DFT and DFTVAL Keywords 4-106
Using the DSPMOD Keyword 4-106
Using the CSRLOC and DSPATR(PC) Keywords 4-107
Controlling Display Functions on Input Operations 4-108
Using the INZRCD and UNLOCK Keywords 4-109
Messagesonthe Display 4-110
Using the PRINT Keyword 4-112
Keyboard-Locking Considerations 4-113
Using Multiple Devices 4-114
Using ApplicationHelp 4-115
Help List 4-116

Contents Xiii

Defining One Help Areaper Record 4-118

Defining Multiple Help Areasina Record 4-120
Using Secondary Help Records 4-121
Examples of Application Help Using HLPRCD 4-124
Restrictions on Using Help Records 4-127
Document Support for ApplicationHelp 4-128
Defining File Level Help Document 4-129
Defining H Specification Level Help Document 4-130
Defining Multiple H Specification Level Help Documents 4-131
Defining Help Documents with Option Indicators 4-131
Defining Help Records and Help Documents in the Same File 4-132
Automatic Recovery for Display Errors L. 4-133
Passing Data between Programs Using Display Functions 4-134
Passing Data in the Same Routing Stepinadob 4-134
Passing Data between Routing Stepsinadob 4-136
User-Defined Data Streams 4-138
Device Differences 4-138
User-Defined Data Stream Considerations” 4-139
Using Windows 4-141
Using Display Files with Program-DescribedData- 4-142
Input-Only Files 4-143
Output-Only Files 4-143
Input and Output Files 4-143
Chapter 5. Printer Support 5-1
Related CL Commands 5-2
Supported Printer Families 5-2
Formatting Printer Output 5-3
Producing Printer Output 5-4
Printer Files 5-4
Program-Described Printer Files, .. 5-4
Externally Described Printer Files 5-4
Externally Described Printer File Example 5-5
DDS for Externally Described Printer Files 5-6
Open Processing for Printers 5-9
Purpose for Open Processing 5-9
Merging the Factors Controlling Open Processing 5-9
Open Considerations 5-9
Status on Open Completion 5-19
Output Operations for Printers 5-19
Output Considerations 5-19
Status on Output Completion 5-20
Close Processing for Printers 5-21
Close Considerations 5-21
Error Handling 5-21
Special Printer Considerations 5-22
First Character Forms Control Data 5-22
Printer Font Support 5-23
Replacing Unprintable Characters 5-31
Using Alternative Character Sets and Code Pages for Printer Qutput 5-32
Print Text 5-37
Editing Output Fields, 5-37
Effect of Changing Fields in a File Description 5-38
Printer File Redirection 5-39
Folding Records ina Printer File 5-43
Printer File Parameters 5-43

Xiv Data Management Guide

Performance Considerations 5-46

Chapter 6. Spool Support 6-1
Output Spooling Overview 6-1
Device Descriptions 6-2
Device File Considerations for Spooled Qutput 6-3
Spooled Qutput Files 6-3
Summary of Spooled Output File Commands 6-3
Locating Your Spooled Output, 6-4
File Redirection 6-4
Output Queues 6-4
Summary of Output Queue Commands 6-5
Default Printer Qutput Queues 6-5
Default System Qutput Queues 6-5
Creating Your Own Output Queues 6-6
Order of Spooled Files on an OutputQueue 6-6
Using Multiple OutputQueues 6-7
Controlling Multiple Output Queues 6-7
Output Queue Recovery 6-8
Spool Writers 6-9
Summary of Spool Writer Commands 6-9
Restarting and Controlling Printing 6-10
Spooled File Security 6-10
Producing Spooled Output Files 6-11
Using the SCHEDULE Parameter 6-11
Using the OUTPTY Parameter 6-12
Open Considerations 6-13
Output Considerations 6-13
Close Considerations 6-13
Controlling the Number of Spooled Files in Your System 6-14
Copying Spooled Output Files 6-14
Specifying CPYSPLF Parameters 6-14
CPYSPLF Command Control Codes: Examples 6-17
Sample Commands for Additional Spooling Support 6-18
Input Spooling Support 6-18
Summary of Job Input Commands 6-20
JobQueues 6-21
TransferringJobs 6-23
Using anInlineDataFile 6-24
Spooling Subsystem 6-26
Spooling Library 6-26
Chapter 7. Tape Support, 7-1
Related CLCommands 7-1
Tape Device Characteristics 7-2
Initializing Tapes 7-2
Tape Labeling 7-2
Multivolume Tape Files 7-4
Extending Tape Files 7-5
Tape Configuration Descriptions and DeviceFiles 7-5
IBM-Supplied Tape Files 7-6
Example of Creating a Tape Device File 7-6
Specifying Tape Device File Parameters 7-6
Using Tape Files in High-Level Language Programs 7-12
Open Processingfor Tape 7-12
Input/Output Processingfor Tape 7-14

Contents XV

Close ProcessingforTape 7-14

Handling Tape Processing Errors and Damaged Tapes 7-15
ProcessingUser Labels, 7-15
Other Tape Support Commands 7-17
Performance ConsiderationsforTape 7-18
Chapter 8. Diskette Support 8-1
Related CL Commands e 8-1
Diskette Device Characteristics 8-2
Diskette Exchange Types 8-2
Initializing Diskettes 8-3
Multivolume Diskette Files 8-3
Diskette Device Descriptions and Device Files 8-4
Diskette Device Files 8-5
Example of Creating a Diskette DeviceFile 8-5
Specifying Diskette Device File Parameters 8-5
Using Diskette Files in High-Level Language Programs 8-8
Open Processing for Diskette, 8-8
I/OProcessing e 8-9
Close Processing 8-9
Handling Diskette Errors 8-10
Part 4. Appendixes
Appendix A. Feedback Arealayouts A-1
Open Feedback Area A-1
Device Definition List A-6
Volume Label Fields A-10
I/0 Feedback Area A-11
Common I/O Feedback Area A-11
I1/0 Feedback Area for ICF and Display Files A-14
I/O Feedback Area for Printer Files A-18
I/0 Feedback Area for Database Files A-19
Get Attributes A-20
Appendix B. Double-Byte Character Set Support B-1
Double-Byte Character Set Fundamentals B-1
DBCS Code Scheme B-2
Shift Control Characters B-3
Using Double-Byte Data B-3
Device File Support B-4
Whata DBCS Filels B-4
When to Indicate aDBCS File B-4
How to Indicate a DBCS File, B-4
Improperly Indicated DBCS Files B-6
Special Functions and Considerations B-8
Printer Support B-8
Using DBCS Printer Functions B-8
Double-Byte Character Printing Restrictions B-10
Spooling Support B-15
Applying Overrides in Printing B-15
Display Support e B-15
Inserting-Shift Control Characters B-15
Number of Displayed Extended Characters B-16
Effects of Displaying Double-Byte Data at Alphameric Work Stations - B-16

Xvi

Data Management Guide

Copying Files B-16

Copying Spooled Files B-16
Copying Nonspooled Files B-16
Application Program Considerations B-17
Designing Application Programs That Process Double-Byte Data B-17
Changing Alphameric Application Programs to DBCS Application Programs B-18
DBCS FontTables e e B-18
Commands for DBCS FontTables B-18
Finding Out if a DBCS Font Table Exists B-19
Copying a DBCS Font Table onto Tape or Diskette B-19
Copying a DBCS Font Table from Tape or Diskette B-20
DeletingaDBCS FontTable B-21
Starting the Character Generator Utility B-21
Copying User-Defined Double-Byte Characters B-22
System Use of DBCS FontTables B-22
Processing Double-Byte Characters B-22
Basic Characters B-22
Extended Characters B-22
What Happens when Extended Characters Are Not Processed B-23
Why Double-Byte Characters Require Special Processing B-23
Double-Byte Character Size B-23
DBCS SortTables B-23
Commands for DBCS Sort Tables B-24
Using DBCS Sort Tables onthe System B-24
Finding Out if a DBCS Sort Table Exists B-24
Saving a DBCS Sort Table onto Tape or Diskette B-25
Restoring a DBCS Sort Table from Tape or Diskette B-25
Copying a Japanese DBCS Master Sort Table to a DataFile B-25
Copying a Japanese DBCS Master Sort Table from a Data File B-26
Deletinga DBCS SortTable B-27
System-Supplied Objects B-27
DBCS FontTables B-27
DBCS FontFiles B-28
DBCS SortTables B-28
DBCS Conversion Dictionary B-29
DBCS Device Files e B-30
DBCS Conversion Dictionaries B-30
System-Supplied Dictionary (for Japanese UseOnly) B-30
User-Created Dictionary B-31
DBCS Conversion Dictionary Commands B-31
Displaying and Printing the DBCS Conversion Dictionary B-37
Deleting a DBCS Conversion Dictionary B-38
DBCS Conversion (for Japanese UseOnly) B-38
Where You Can Use DBCS Conversion B-38
How DBCS Conversion Works B-39
Using DBCS Conversion B-39
Performing DBCS Conversion B-39
Appendix C. Display File ReturnCodes C-1
Major Code 00 C-1
Major Code 02o C-2
Major Code 03 e C-3
Major Code 04 C-4
Major Codes 08-11 C-5
Major Code 34 C-6
Major Code 80 C-7

Contents XVii

xviii

Major Code 81 C-11

Major Code 82 C-13
Major Code 83 C-19
Appendix D. Printer File ReturnCodes D-1
Major Code 00 D-1
Major Code 80 D-3
Major Code 81 D-7
Major Code 82 D-9
Major Code 83 D-12
Appendix E. EditCodes E-1
OS/400 Edit Codes E-1

Examples of Editing Using OS/400 Edit Codes [E-2
User-Defined EditCodes E-3

Using User-Defined Edit Codes E-4

Example of a User-Defined EditCode E-4
Appendix F. System/36-Compatible Display Data Management F-1
Clearing LinesontheDisplay F-2
Input Data for Display File Records F-3
Input Data from the Work Station Controller F-3
Self-Check F-3
Returninput F-4
Erase InputFields F-4
Display Attributes F-5
Positioning the Cursor F-5
Displaying Messages F-6
Put Override e F-8
Handling Signed NumericData F-9
Function Keys F-10
Help Key Considerations F-10
Using Command Keys to Exit ApplicationHelp F-11
Cancel-invite Operation F-11
Retain Command and FunctionKeys F-12
System/36 Functions Not Supported F-12
Restricted DDS Keywords/Functions F-13
Appendix G. DDS Coding Form, G-1
Glossary H-1
Index X-1

Data Management Guide

Figures

1-3.

4-1.
4-2.
4-3.
4-4.

4-5.
4-6.
4-7.

4-9.
4-10.
4-11.
4-12.

6-1.

6-2.

7-1.

7-3.
7-4.
G-1.

© Copyright IBM Corp. 1988, 1989

Using a Database File 1-2
UsingaDeviceFile 1-4
Using a Printer Device with a Spooled File 1-5
Using DDM Files 1-6
Using Save Files 1-7
Permanently ChangingaFile 1-26
Temporarily ChangingaFile 1-27
Record Formats in the Program and on'the Display 4-6
Vertically Displayed Subfile 4-39
Horizontally Displayed Subfile 4-40
Horizontally and Vertically Displayed Subfiles Displayed at the Same

Time . e 4-40
DDS Keyword Processing Order for Subfile Control 4-46
Using DSPATR(PC) to Position the Cursor in a Subfile 4-56
Valid Placement of Records on a Screen when the CLRL Keyword Is
NotUsed 4-83
Invalid Placement of Records on a Screen when the CLRL Keyword Is
NotUsed 4-85
Replacing Record Formats 4-86
Use of the PUTRETAIN Keyword at the Record Level 4-104
Use of the PUTRETAIN Keyword at the Field Level = 4-105
Using the DSPMOD Keyword 4-106
Relationship of Output Spooling Elements - 6-2
Relationship of input Spooling Eiements 6-19
Multivolume Tape File Sequence Using Three Tape Devices 7-4
Read Backwards for Multivolume File Sequence 7-4
Tape Containing Four Files 7-5
Tape after Extending FILE2 7-5
Sample DDSForm G-1

Figures XiX

XX Data Management Guide

Tables

1-1.
1-2.
1-3.
1-4.
1-5.
2-1.

3-2.
3-3.
3-4.
3-5.
3-6.
4-1.

5-7.
6-1.
6-2.

7-2.
8-1.
A-1.
A-2.

A-4.
A-5.
A-6.
A-T7.
A-8.
E-1.
E-2.
E-3.
F-1.

© Copyright IBM Corp. 1988, 1989

File Types and Their Main Operations 1-17
High-Level Languages and Their 0S/400 Operations 1-18
Object Authority and Data Authority Required for File Operations .. 1-20
0S/400 Data Management Message Number Ranges 1-31
Major Return Code Definitions 1-32
File Redirections 2-25
Copy Operations e 3-2
Summary of Copy Functions for Database Files 3-4
Summary of Copy Functions for Device Files 3-5
Database-to-Database Copy Operations 3-25
Field Conversions 3-26
Authority Required to Perform Copy Operation 3-30
Display File Operations Supported by the Operating System and the
Equivalent High-Level Language Commands 4-20
Subfile Operations Supported by the System and the Equivalent

High-Level Language Commands 4-36
CHRID Values e 4-74
PRINT Keyword Considerations Using PrintKey 4-112
Printer DDS Keyword Support 5-8
Lines per Page (PAGESIZE Parameter) 5-11
Characters per Line (PAGESIZE Parameter) 5-12
Printer Drawer Support 5-17
Printer Font Table (FONT Parameter) 5-27
Character Identifier Values and Applicable Printers (CHRID

Parameter) 5-34
Printer Support Parameters L. 5-44
Header Record Format 6-16
Data Record Format 6-17
Tape Device File Parameters 7-11
Specifying Record Lengths by Record and Format Type 7-13
Diskette File Parameters 8-7
Open Feedback Area A-1
Device Definition List A-6
Volume Label Fields A-10
Common I/O Feedback Area A-11
1/0 Feedback Area for ICF and Display Files A-14
I/0 Feedback Area for Printer Files A-18
I/0 Feedback Area for Database Files A-19
Get Attributes A-20
Summary Chart for 0S/400 EditCodes E-1
Valid Edit Codes, Source Data, and Edited Output E-2
IBM-Supplied Edit Descriptions E-3
Message Filesfor MSGID F-7
Message Filesfor MSGID F-7

Tables XXi

xxii Data Management Guide

Part 1. Introduction

Data management is the part of the operating system that controls the storing and
accessing of data by an application program. The data may be on internal storage
(for example, database), on external media (diskette, tape, printer), or on another
system. Data management, then, provides the functions that an application uses in
creating and accessing data on the system and ensures the integrity of the data
according to the definitions of the application.

Data management provides functions that allow you to manage files (create,
change, override, or delete) using CL commands, and create and access data
through a set of operations (for example, read, write, open, or close). Data manage-
ment also provides you with the capabilities to access external devices and control
the use of their attributes for creating and accessing data.

If you want to make more efficient use of printers and diskette devices, data man-
agement provides the capability of spooling data for input or output. For example,
data being written to a printer can be held on an output queue until the printer is
available for printing.

On the AS/400' system, each file has a description that describes the file character-
istics and how the data associated with the file is organized into records, and, in

| many cases, the fields in the records. Whenever a file is processed, the operating

| system (Operating System/400 or OS/400)' uses this description.

Creating and accessing data on the system is done through the use of these file
objects. Data management defines and controls several different types of files.
Each type has associated CL commands to create and modify them, and the data
can be created and accessed through the operations provided by data management.

File Types: The data management functions support the following types of files:
Database files are files whose associated data is stored permanently in the system.

Device files are files that provide access to externally attached devices such as dis-
plays, printers, tapes, diskettes, and other systems that are attached by a commu-
nications line. The device files supported are:

* Display files which provide access to display devices.

* Printer files which describe the format of printed output.

Tape files which allow access to data files on tape devices.

Diskette files which provide access to data files on diskette devices.
Intersystem communications function (0S/400-ICF), hereafter referred to as ICF,
| files which allow a program on one system to communicate with a program on

| the same system or another system.

Save files are files that are used to store saved data on disk (without requiring
diskettes or tapes).

Distributed data management (DDM) files are files that allow access to data files
stored on remote systems.

| 1 AS/400, Operating System/400, and OS/400 are trademarks of the International Business Machines Corporation.

© Copyright IBM Corp. 1988, 1989 Part 1. Introduction

Each file type has its own set of unique characteristics that determines how the file
can be used and what capabilities it can provide. The concept of a file, however, is
the same regardless of what type of file it is. When a file is used by a program, it is
referred to by name, which identifies both the file description and, for some file
types, the data itself. To be able to use files to their full capabilities, this manual is
designed to help you understand both the common characteristics of all file types
and the unique characteristics of display, printer, tape and diskette device files.

Data Management Guide

Part 2. Common File Support

The chapters in this part contain information that is applicable to all file types. This
information includes concepts and more detailed information about some file-
related functions.

Chapter 1, “File Processing” introduces the data management structure and objects
and how an application program uses them to perform data management functions.
Understanding the contents of this chapter is necessary before reading any of the
other chapters in this manual and other manuals in the library that discuss the
details of the file types not covered by this manual.

Chapter 2, “Overrides and File Redirection” contains the concepts and detailed
information about temporarily making changes to files when an application program
is run.

Chapter 3, “Copying Files” contains information on the system commands that can
be used to copy data from one place to another, such as from a database file to a
tape device, or from one database file to another.

© Copyright IBM Corp. 1988, 1989 Part 2. Common File Support

Data Management Guide

Chapter 1. File Processing

This chapter discusses basic aspects of processing files. Topics include:

¢ File types supported by the system

¢ File descriptions: what they are, how to create them, and how to change them

* Definitions of and differences between externally described data and program-
described data

¢ File operations supported by the system for use in high-level language pro-
grams

¢ File security considerations

e Sharing files in the same job

e Allocating file resources

¢ Temporarily changing a file when a program uses it

e Feedback areas maintained by the system

¢ Handling file errors when programs run

General Information about Files

In order for any program to work with the database, a device, or another system that
is accessible through a communications line, it is necessary for such programs to
use files. There are several different types of files supported by the operating
system. By using a file of the correct type, you can have a program work with what-
ever it needs to. The files used are the doorways for the program to gain access to
the items the program needs.

A file is a named object that exists independently of the application that uses it. The
system object type for files is *FILE. ‘Because a file is an object, it has the same
general characteristics as any other object on the system. This means:

¢ A file comes into existence when it is created. There are CL commands that
allow you to create the various types of files supported by the operating system.

e As part of the create process, the file is given a name by which it can be
referred to and is stored in the library which you choose.

¢ Once afile is created, it can be used by your application.

¢ Once a file is created, it can be changed to a certain extent. There are CL com-
mands that allow you to change the various types of files.

e Afile can be secured. A file can be made public for anyone to use or can be
restricted so only authorized persons can use it.

e A file has an owner.
e Afile can be saved off the system and restored back on.
e A file can be deleted when it is no longer needed. The Delete File (DLTF)

command allows you to delete files.

There are a number of different kinds of files on the system that you receive from
IBM. These are created by IBM for your use and should serve a number of your
needs. These are described in later chapters. If you have need for additional files,
you can create and maintain these yourself. In some cases you will find that you
can create new files by using the ones supplied by IBM as models.

©® Copyright IBM Corp. 1988, 1989 Chapter 1. File Processing 1-1

File Types

The different types of files supported by the operating system can be classified into
four general categories:

* Database files: Files that provide access to the database.

* Device files: Files that provide access to externally attached devices such as
displays, printers, tapes, diskettes, and other systems that are attached by com-
munications lines.

¢ Distributed data management (DDM) files: Files that provide access to data that
is stored on a system other than the one the program is running on.

° Save files: Special-purpose files that are used to make data ready for saving or
for transporting to another AS/400 system.

This section provides an overview of how an application program works with each of
these general categories of files. Regardless of what type of file an application
program uses, the overall processing of the file is the same.

Database Files

The key to understanding how your program can use a database file' is for you to
understand the objects that are involved and how these objects are related.
Figure 1-1 shows an overview of working with database files. When working with
database files, the following items are involved:

* Application program

This is a program that reads data from a database file or writes data to a data-
base file. This program could be one that you develop in a programming lan-
guage.

¢ Database file

This is the file with which you want the application program to work. This file
identifies which set of data within the database that you want the program to
work with.

e Data

This is the actual data (information). Each database file has data associated
with it. This data is maintained as an ordered set of records where each record
is an ordered set of one or more fields. The number of records associated with
a file can grow or shrink as programs put new records into the fiie or deiete
existing records from the file.

Application DataBase
Program File

Data

RSLH120-1

Figure 1-1. Using a Database File

The primary point of reference for working with data in the database is a database
file. To work with any part of the database, the application program must first obtain
a path to that part of the database which is of interest. This is accomplished by

1 If you are interested in reading more information about database files at a later time, you can go to the Database Guide.

1-2 Data Management Guide

|
I

Device Files

having the program perform an open operation against a database file. Opening a
database file provides the program with access to the data related to that file. A
path is established between the program and that part of the database. Opening
additional database files provides the program with paths to additional parts of the
database.

Once the file has been opened successfully, the program is now in a position to
work with the actual data that is related to the file. The application may read
existing records from the file or may write new records out to the file. During all
read or write operations, the application program always refers to the database file
that it opened. This reference to the opened database file clearly identifies what
part of the database the operation is directed to. This is especially important when
more than one database file is opened and used at the same time. Mistakenly refer-
ring to the wrong database file would direct the operation to the wrong set of data.

The data related to a database file is always organized and formatted according to a
file description that was provided when the file was created. The program is free to
work with the data only in a manner that is consistent with this description. For
example, if the description states that the access path to the records is keyed, then
the program can retrieve records by doing read-by-key operations. If the
description states that the access path to the data is sequential, then read-by-key
operations are invalid. This description, which is an integral part of the file, is used
to control the flow of data on the path between the program and the database file.
File descriptions are discussed in more detail later.

Figure 1-2 on page 1-4 shows an overview of working with device files.2 When
working with device files, the following items are involved:

* Application program

This is a program that wants to read data from a device or write data to a
device. This may be a program you develop in a programming language.

e Actual device

This is the externally attached hardware the application program wants to use.
The externally attached hardware may be a tape, diskette, display, or printer
unit. The externally attached hardware may also be another system that is con-
nected to the system on which the program is running by a communications
line. If the device is another system, the program that is using the device file
may be connected to another program rather than to an actual hardware unit.

¢ Device description

This is a description of the hardware capabilities of the device. For locally
attached devices, the device description is created when the device is first
attached to the system. In the event the device is attached by a communications
line, there are also line and controller descriptions in addition to the device
description. The sum total of all three descriptions, in this case, represents the
hardware capabilities of the device. The device description is not discussed in
detail within this publication. More information about device, line, and con-
troller descriptions can be found in the Device Configuration Guide and the
Communications User’s Guide.

2 If you are interested in reading more information about ICF files at a later time, go to the Communications Programmer’s Guide.

Display files, printer files, tape files, and diskette files are discussed later in this manual.

Chapter 1. File Processing 1-3

e Device file

This is a file that contains information about how a device is to be used. By
referring to a specific device file, the application states that it wants to use the
device in a manner consistent with the information that is contained in the
device file. The information in the device file must also be:consistent with the
capabilities of the device as'is given by the device description. While the device
is being used, the device file refers to the device description. The types of
device files are: display, printer, tape, diskette, and ICF.

e Data

This is the data (information) that the program wants to read from the device or
write out to the device.

Application Device | Device Data
Program File
Device
Description
RSLH121-0

Figure 1-2. Using a Device File

The primary point of reference for working with a device is the device file. Before a
program can work with a device, it must obtain a path to the device. This is accom-
plished by performing an open operation against a device file. Opening a device file
establishes a path between the program and a device. Along this path flows the
data between the program and the device. Each device file that is opened provides
a path to a device for the program. A program may work with more than one device"
at a time by opening more than one device file. Display and ICF files allow more
than one device to be attached to an open file.

A device file does not have a set of data uniquely associated with it like a database
file does. The relationship between data and a device file is temporary and is
established when the device file is opened. At that time, the device file is used to
control the processing of data that flows between the application and the device.
Once the path that was established by an open operation is closed, the relationship
between the data and the device file that was used to control the processing of that
data is ended.

Once a device file is opened, the program can proceed to read and write data. All
operations refer to the device file rather than to the device. The device file selected
controls the flow of data between the program and the device. How a device file
controls the processing of data is determined by a file description, which is an inte-
gral part of the device file. A file description is provided when a device file is
created. The contents of a file description vary by the type of device it is designed
to work with. In general, the description in a device file is used to control the
device, format output data from the program for presentation at the device, and
format input data from the device for presentation to the program.

For certain device file types, spooling may be used. When spooling is used, data
management stores the data in an intermediate holding area called a spooled file.
Spooling is an attribute of a device file rather than another type of file. The fact that
spooling is being used is not visible to the program. The program continues to work

1-4 Data Management Guide

with device files just as if the device is being used directly. For input, when the
program does a read operation to the device file, data management goes to the
spooled file to get the data rather than going to the device. For output, when the
application does a write operation, data management stores the data in a spooled
file rather than putting the data out to the device.

There are a number of advantages to using spooling which would not be realized if
the device was used directly. These advantages range from better device utilization
to greater flexibility in the processing of the data. More information on spooling is
presented in Chapter 6, “Spool Support.”

Figure 1-3 shows an example of using spooling for output to a printer. As can be
seen, the program works with a printer device file. The fact that the output data is
going into a spooled file rather than the printer is not visible to the program. The
printing of the data can occur at some later time, even after the program that
produced the data has stopped.

Application Device Spooling .

Program File File Device Data
Device
Description

RSLH122-0

Figure 1-3. Using a Printer Device with a Spooled File

Distributed Data Management (DDM) Files

A DDM file is used to allow your application program to gain access to data that is
stored on another system. The system on which your program is running is referred
to as the source system, while the system at which the desired data is stored is
referred to as the target system. The target system is connected to the source
system by a communications line. The discussion which follows is limited to the
case where both the source and target systems are AS/400 systems. In actuality,

| DDM files allow System/36, System/38, and AS/400 systems to be either source or

| target systems.3

Figure 1-4 on page 1-6 illustrates the use of DDM files. When working with DDM
files, the items involved are:
* Application program

This is a program that is running on the source system and wants to gain access
to data on the target system. This program could be one which you develop in a
programming language.

¢ DDMfile

| 3 Ifyou are interested in reading more about DDM files at a later time, you can go to the DDM User's Guide.

Chapter 1. File Processing 1-5

This is the file with which you want the application program to work. The DDM
file provides the ability for the application program to gain access to the target
system first and to a database file on the target system second.

e Database file

This is the database file on the target system which the application program
wishes to access. Although the program is working with the DDM file, it
appears to the program like it is working directly with this database file. The
DDM file serves as a underlying access method to connect the program to the
database file.

e Data

This is the actual data (information) that is associated with the database file on
the target system. On read operations, the data is moved from the target
system to the source system, where it is made available to the program. On
write operations, the data received from the program is moved from the source
system and is stored on the target system.

AS/400 Source System AS/400 Target System
it ; Data
Program |« DI?M < Communications Line Base Data
File -
> File
RSLH194-2

Figure 1-4. Using DDM Files

Before your application can work with a database file on the target system, it must
establish a path:

* First, to the target system itself
¢ Second, to the correct database file on that target system

Your application program can establish a path to both the target system and the
database file on the target system by opening a DDM file. In this respect, a DDM file
combines aspects of both device files and database files. That is, by opening a
DDM file, your program gains access to a device (the target system) and a database
file.

After a path has been established, the program can proceed to work with the data-
base file. The program can read data from the database file and write new data to
file it opened. Even though the program is referring to the DDM file, it appears as if
the program is working directly with the database file. In particular, it is the data-
base file description that controls how your program can work with the data.

There is no unique set of data associated directly with the DDM file itself. The data
being processed is associated with the database file that is accessed via the DDM
file. The DDM file is serving only as an intermediary to connect the program to the
database file. Once the path that was established by the open operation is closed,
the fact that the DDM file was an intermediary for processing the data in the data-
base file is not remembered.

1-6 Data Management Guide

Because of this capability of a DDM file, a program that is to work with a database
file can be designed without regard to where the database file actually resides. The
program need only open a file. If the file happens to be a DDM file, only the oper-
ating system needs to be aware that the database file is on another system. The
program itself need not be concerned and may operate in the same manner all the
time.

Save Files

Save files are files that are used to prepare data in a format that is correct for
backup and recovery purposes or for transportation to another system. A save file

| can be used to contain the output that is produced from CL commands such as the

| Save Library (SAVLIB) or Save Object (SAVOBJ) commands. This is the typical way
in which this type of file is used. However, it is possible for your application

| program to also use save files*.

Figure 1-5illustrates the use of save files. When working with save files, the items
involved are:
* Application program

This is the program that reads data from the save file or writes data to the save
file. This could be a program that you develop in a programming language.

* Save file

This is the save file with which you want the program to work. The save file
identifies a unique set of data.

e Data

This is the data that is associated with the save file. The data within a save file
is organized and formatted according to the rules that the operating system has
set up for save files. Because the data is in a special format, you do not have
the flexibility to control these rules to the same extent that is possible with data-

base files.
Application Save Data
Program File

RSLH195-0

Figure 1-5. Using Save Files

Before a program can work with a save file, it must establish a path to that file. The
program establishes that path by opening the save file that is of interest. After
opening the file, the program can perform read and write operations against that
file. On all operations, the save file that was opened is the point of reference. A
program can gain access to more than one save file at a time simply by opening
more than one save file.

The data that flows between the program and the save file is controlled by a file

description that is associated with the save file. This description is an integral part
of the save file and comes into existence when the save file is created. A program
is allowed to use the data in a save file only in a manner that is consistent with this
description. In this respect, save files are similar to database files. A major differ-

| 4 If you are interested in reading more information about save files at a later time, you can go to the Backup and Recovery Guide.

Chapter 1. File Processing 1-7

ence between the two, however, is the amount of control you have over the
description. When you create a database file, you are the one who provides the
database description. You have complete control over what the file description
should be. This is not true for save files. Data in a save file is in a special format
that is suitable for backup and recovery purposes. Because of this, the operating
system controls the description of the data in the save file. When a save file is
created, this system-generated data description is automatically associated with the
new save file.

Contrast among File Types

In comparing the figures above, you can see the overall similarity among the files
from the four categories. The overall structure is the same. There are two major
differences which you should be aware of, however:

* Visibility of the device

In the case of database, DDM, and save files, the program need not be aware
that the data is coming from or going to a device. The data management
support for these three categories automatically handles all device-related
operations and characteristics. As a result, your program need only work with
the file without any concern as to how the data is stored.

In the case of device files, because the devices are externally attached and
because of the variety that can exist, the system cannot mask the device from
the program.

¢ Data storage

In the case of a database or save file, there is actual data that is associated with
the file. A database or save file uniquely identifies a set of data. In the case of
a device or DDM file, no actual data is associated with the file. The file is a tool
that is used to process data that is associated with an external source such as a
device or another system.

File Descriptions

Associated with each file is a file description. A file description is information that
describes the characteristics of the file. The file description for a file comes into
existence when the file is created. It is an integral part of the file and remains with
the file until the file is deleted. Certain parts of a file description can be changed
after the file is created. Such a change can be done as a permanent or temporary
change.

The information that can be contained in a file description is determined by the file
type, since different file types have different capabilities. A file description is essen-
tially a declaration which states that from all the possible things that can be done
with a file of a certain type, these are the ones that are to be valid for this particular
file. As aresult, a file description plays an important role, for it determines how a
program is able to use the file. Whenever a program wants to access a file, the
system uses the file description of that file to control the access. If the program
attempts an operation that is inconsistent with the file description, the system does .
not allow the operation and wiil, instead, return an error condition.

The description for a file is constructed from information you provide when the file is

created (with the exception of save files in which case the system controls the
description). Through a file description you can specify:

1-8 Data Management Guide

¢ Device controls

* linkage information for communications paths
* Spooling attribute

e Data organizations

¢ Data presentation formats

¢ Data storage formats

This overview introduces you to the concept of a file description by using examples.
Keep in mind when reading this section that many other things can be specified in a
file description. It is beyond the scope of this introduction to provide a complete list
of all the things that can be specified in a file description. Refer to the chapters that
follow later in this manual for additional information on tape, diskette, printer, and
display files. Refer to the publications that are listed at the front of this manual for
additional information on ICF, DDM, database, and save files.

Because data is organized by field, record, and file, file descriptions reflect this
organization. A field is the smallest unit of data that is recognized and handled by
the data management support of the system. A record is an ordered set of one or
more fields. A file is an organized set of zero or more records (a file with zero
records is empty). When constructing a file description, you may need to consider
providing descriptions at three different levels, depending on the type of file you are
about to create and what purpose the file is to serve. These three levels are:

¢ Field-level descriptions
* Record-level descriptions
¢ File-level descriptions

Field-Level Descriptions: Field-level descriptions allow you to give the detailed
characteristics of the smallest unit of data that can be handled by the data manage-
ment support of the system. For a database file, a field-level description tells the
system how data for the field is to be stored in the file. Through a field-level
description you can specify how long the field should be in the database file and
what type of data it is. You can also use field descriptions in a database file to tell
the system what the data is to look like when it is presented to a program as the
result of a read operation (or conversely, when the program presents data to the
system on a write operation). The presentation format need not be the same as the
storage format. The system uses the field-level descriptions to move field data into
and out of a database file, performing mapping whenever necessary, and insuring
that new fieid data is valid according to the description you gave.

A field description can be used in a display file to tell the system how the field is to
be presented at the display device as well as how it will be presented from the
program to the system on output and from the system to the program on input. You
can specify where each field is relative to the start of a record and what the charac-
teristics of each field will be while in the system. The system uses this information
to determine where the data for each field should be acquired from for output. It
also uses this information to determine where and how input from the device should
be placed so the program can use it. Through a field description you can also
specify such things as whether the field is an input-capable field or output only, what
type of data is valid for the field, whether the field should be highlighted in some
way, and where on the screen the field is to appear. The system uses field-level
descriptions in preparing output data from the program for presentation at the
display. It also uses these descriptions to enable fields for input and to validate
input data before it is given to the program.

Field-level descriptions are valid for use with database, display, printer, and ICF
files. They are not valid for use with tape, diskette, DDM, and save files. In the case

Chapter 1. File Processing 1-9

of DDM files, although field-level descriptions are not valid with the DDM file itself,
the field-level descriptions of the database file on the target system are used. In the
case of tape and diskette, the system does not operate at the field level for data
being processed through the file. The support operates at the record level only.

In the case of ICF files, you may use field-level descriptions. However, the system
does not actively use these descriptions. For ICF files, the system operates at the
record level. The system allows you to have field-level descriptions so you can cen-
tralize a standard description of the fields with the file. These standard field
descriptions can be incorporated with any application program that will work with
the file. This topic is discussed later in “Externally Described Data” on page 1-12.

The extent to which you use field-level descriptions is your choice. Using field-level
descriptions allows the system to do more for you and also allows the system to
insure to a greater extent that the data is valid. If you do not use field-level
descriptions, the system only is able to handle data at the next-higher level, the
record level. This is a larger unit of data, the details of which the system knows
little about. Because the system does not know where the fields are in the record,
functions like field mapping and field validity checking cannot be done.

Record-Level Descriptions: Record-level descriptions are used to tell the system
what a particular record looks like. That is, it provides a record format. If field-level
descriptions are also being used, the record format is given in terms of one or more
field-level descriptions. You simply identify what fields make up the record format
and the order of these fields within the record format. If field-level descriptions are
not used, the record format is given by specifying how long the record is. In the
case of save files, the record length is determined by the system. You cannot
change this.

A record is the unit of transfer between the system and the application program. On
a read operation, the program receives a record from the system. On a write opera-
tion, the program gives a record to the system. Therefore, a record-level
description is required for all file types. Without knowing the record format, the
system would not know how much data is being transferred on an operation.

When the record format is given simply as a /ength, the system must handie the
entire record as a unit. It has no knowledge of what the data within the record looks
like. It cannot operate on one part of the record one way and another part a dif-
ferent way. When a record format is given in terms of field-level descriptions,
however, the system has detailed knowledge of the structure of a record and can
treat each fieid in a unique way. Constructing record formats using field-level
descriptions gives you many capabilities. For example, with database files it is pos-
sible to give a record format that describes how data is to be stored in the file. It is
also possible to define another format over the same data that describes how a
program is to see the data. Because the system understands the fields in each
format and the relationship between the formats, it can perform data mapping
between the format that the program works with and the format the data is stored
under. This would not be possible if the record format was specified as a string of
data of a certain length.

Another example is the use of these types of record formats in display files.
Because each field in the record is described with detailed presentation character-
istics and the location of each field within the record is also described, the system
can present the data for each field in a unique way on the screen. One field can be
an input-capable field while another can be an output field only. One field can be

1-10 Data Management Guide

highlighted in some way while another is not. Such capabilities would not be pos-
sible if the system only knew the record as one long string.

File-Level Descriptions: File-level descriptions are descriptions that apply to the
file as a whole. What can be specified at this level varies by type of file. For
example, for a database file you can specify what record formats are valid for the
file, how the data is to be organized (sequentially or by key), and if by key, what
fields should be used as the key fields. For a display file you can specify what
record formats are valid for the file, what device(s) the file should be usable with,
and what graphic character set is to be assumed for the data that will be entered
through the file. For a tape file you can specify block size, label information, and
recording density. For a printer file you can specify the size of the page, characters
per inch, and lines per inch. For an ICF file you can specify what devices the file
should be used with and the maximum wait time for incoming data.

Constructing File Descriptions

A number of options are available on the system that you can use to enter file
descriptions. This overview gives you a brief description of each of these options.
For more information you can refer to the publications that are listed in the front of
this manual. The options that are of interest are:

¢ CL commands

* Data description specifications (DDS)
* Interactive data definition utility (IDDU)
¢ Screen design aid (SDA)

CL Commands: There is a CL command which allows you to create each type of
directly to file-level descriptions. For example, to create a tape file you use the
Create Tape File (CRTTAPF) command. On this command you will find parameters
which can be used to specify such file-level descriptions as block length, recording
density, label information, and record length. For tape, diskette, save, and DDM
files, using the CL commands is the only method available for entering file
descriptions. For other files, the CL commands are made to work in conjunction
with the next option, DDS.

DDS: DDS is a language that allows you to specify the file description for a data-
base, printer, display, or ICF file. DDS allows you to specify file-level, record-level
and field-level descriptions. To use this option you enter source statements that
contain the descriptions. The source statements you enter must be placed into a
source file. After you have completed the DDS for a file description, you can use
that source as input to create the related file. You simply refer to the source file on
the CL command that creates the file. The parameters on the CL command and the
DDS source statements are merged to form the final file description for the file.

DDS provides statements by which you can enter all aspects of a file description.
However, you should use only those statements that are valid for the type of file you
want to create. If you should happen to use DDS statements that are invalid for the
type of file you want to create, the system detects these and informs you of the
error. Creation of a new file occurs only if no errors are detected that would make
the new file invalid.

You may use any method you wish to enter the DDS source statements into the

source file. An easy method is to use the source entry utility (SEU) as an interactive
method to enter DDS. Since SEU supports the syntax checking of DDS source as it

Chapter 1. File Processing 1-11

is being entered, using this utility can give you early detection of any errors you
might make.

IDDU: IDDU is an interactive utility that can be used to create file descriptions for
database files only. What you can do through IDDU overlaps with what you can do
through DDS to a great extent, although IDDU does not support all the capability that
is available through DDS. The major advantages of using IDDU over DDS are:

¢ IDDU is interactive. Instead of having to enter DDS source statements to specify
your file description, you respond to interactive screens. The screens are
simple and straightforward, thereby making this task easier.

¢ The specifications which you enter through IDDU are kept in a data dictionary
where they can be used over and over in different combinations. This is in con-
trast to a DDS source file which really represents a single file description. You
can create more than one file using the same DDS source file. However, the
files end up with the same file description unless you explicitly go in and change
the DDS source file in between file creations. With IDDU, you just go back to the
data dictionary and reuse what is already there in a different way, thereby gen-
erating a new file description.

To create a file using the specification you entered through IDDU, you must also use
IDDU. You cannot use the CL create commands that were previously discussed.
IDDU does not generate DDS; it generates data dictionary entries. Data dictionary
entries are different from DDS statements.

The specifications that you enter using IDDU are referred to as definitions rather
than descriptions. This term is used to refer to the specifications as they exist in the
data dictionary. When you create a file, the definitions in the data dictionary are
used as input to generate a file description. The resulting file description is part of
the file and is separate from the definitions which still remain in the dictionary.

SDA: SDA is an interactive utility that assists you in the design of displays
(screens) for your applications. On the displays that are presented from SDA, you
can dynamically lay out where each field should go on the application program
display and describe the characteristics each field should have. You are able to see
what the display will look like as you interact with SDA. On completion of the task,
SDA transforms what you enter at the displays into DDS source statements which
are then used to create the display file.

Externally Described Data

Historically, what records in a file looked like was not recorded anywhere outside of
the programs that worked with those files. That is, what fields made up the record,
how long each field was, and what type of data was in each field was specified only
in the language statements of the program. Because there was no easy method to
centralize a standard description of a file so that all programs would look at the data
in the same way, mistakes were made. Some programs would process the data one
way while other programs would process it a different way.

From discussions in the preceding sections, you have seen that on this system there
is a way to centralize a standard description for database, display, printer, and ICF
files (and indirectly for DDM files). It is the file description that is associated with
any file of these types. By using a field-level description, you can produce a very
detailed and standard description of both the file and any data that can be pro-
cessed through the file. This standard description exists independently of any
program that uses the file. On this system, the term externally described data is

1-12 Data Management Guide

used to refer to the fact that the detailed description of the file and data is not
embedded in any using program, but rather is contained in the file itself. To under-
stand how the data is formatted, you need look only at the file description.

The system uses the file descriptions to process data on both input and output from
the application. For data that is read by the program, the system uses the file
description to determine how the data should be presented to the program. If any
mapping is required, the system performs this mapping. The program will always
see incoming data according to the file description. For data that is written by a
program, the system uses the file description to determine the format of the data as
the program gave it to the system. Then the system takes the data from the
program and performs the necessary mapping and additional functions (such as
highlighting a field on a display) to ensure that the data is in the correct format
before storing it in a database file or presenting it at a device.

You can take advantage of externally described data also. Because the description
is centralized, it is possible to incorporate the file description in the using program.
Most programming languages supported by the system provide this capability. How
this is done varies by programming language. Generally, you need to declare that
the external descriptions are to be used. This is done by stating that the file is to be
used as an externally described file. You need not redefine what the fields in the
records look like. The language compiler or interpreter will go to the file and
extract the file description. Those descriptions will then be incorporated into the
program just as if you had declared these things explicitly in the source program.

There are several advantages to using externally described data:

* Increased programmer productivity. The language automatically describes the
record layouts for you without additional coding. You need to describe records
and fields only once (when the file is created), and can then refer to these fields
within the program.

e Ease of file and program maintenance. When fields are added, deleted, or
changed, it can be done in one place instead of maintaining the record layout in
each program that uses the file.

* Increased data integrity. Since the fields and records are described in one
central location, there is less chance of programming errors describing the data
in the file to the program. All application programs using the file will have the
same view of the data. Moreover, the system view of the data becomes the
same as the application program view.

* Level checking provided. Level checking is an automatic method used when the
program is run that determines if the file description has changed since the
program was last compiled. Depending on the type of change, the program only
may need to be recompiled without modification. This allows better control over
program maintenance. There is more information on the level-checking function
in “Detecting File Description Changes” on page 1-28.

Program-Described Data

Some file types do not allow a detailed description to be used since field-level
descriptions are not supported. Even for those files that do have field-level
descriptions, you are not required to use the external descriptions in your program.
If you cannot use externally described data because of the file type or if you choose
not to, then you must declare variables in your source program which define to the
compiler or interpreter what the program thinks the data looks like. Such declara-
tions are referred to as program-described data. That is, the description of the data

Chapter 1. File Processing 1-13

related to the file is represented by the variable declarations you have coded in the
program.

For tape, diskette, and save files, program-described data is the only option sup-
ported.

When externally described data is used, both the program and the system have the
same view of the data. When program-described data is used, this may not be true.
There are two cases to consider:

¢ [f the file does not have any field-level descriptions with it, the system must
operate at the record level. The only concern in this case is that the record
length the program is using is the same as what the system is using. It need not
be, but the system always operates with the record length it has. If this length is
different from what the program is using, the system truncates or pads as appro-
priate. The exception to this is save files. For save files the program must
operate with the same record length as the system or a severe error condition
will result when the file is first opened.

* The second case that must be considered is when the file does have field-level
descriptions, but the program has elected not to use them. In this case, even
though the program does not use the field-level descriptions, the system does.
The system still expects the program to present data according to the file
description and, conversely, will provide data to the program according to the
description. Should the program description be different from the file
description, an error could result. This problem could arise if database files are
used in this manner.

Changing a Fiie Descriptiion
After a file has been created, it can be changed. What method is used to make a
change depends on what part of the file description needs changing.

If you need to change the file-level description that was specified on the CL
command used to create the file, there are corresponding CL commands for
changing each file type.

If you need to change the file-level, record-level, or field-level information contained
in DDS, you must first update the DDS for the file. You have the same options for
how you update DDS as you had for entering it when the file was created. After the
DDS is updated, you must delete the old file and use the appropriate CL command
again to create the file with the updated DDS.

If you need to change both the CL command file-level descriptions and the DDS, you
can do that by specifying the new values on the create CL command used to create
the new file.

Whether programs that use a changed file will use the new file description the next
time the program is run depends on what was changed in the file. If the file-level
description was changed with a CL command, any program that uses the file will
automatically use those new descriptions. If the DDS descriptions were changed
and the program uses the file as a program-described file, then the system will use
the new file description, but the program view of it may not be correct anymore,
which could result in problems. If the DDS descriptions were changed and the
program uses the file as an externally described file, then the record-level and field-
level descriptions used when the program was compiled may not match the
changed file. The system may detect such a mismatch when the program opens the

1-14 Data Management Guide

file and gives the program an error condition. See “Detecting File Description
Changes” on page 1-28.

The system also supports a way for you to temporarily change the file-level
descriptions when a file is opened in a way that affects only the program opening
the file. These temporary changes are discussed later in this chapter. See
“Opening Files” on page 1-25.

Data Management Operations Overview

Data management supports many operations that high-level language programs can
use to process data. These include the following, which are grouped by category:

File Preparation

OPEN

ACQUIRE

Input/Output
READ

WRITE

Attaches a file to a program and prepares it for I/0O operations. A
file may be opened for any combination of read, write, update, or
delete operations.

Attaches a device or establishes a communications session for an
open file in preparation for 1/0 operations.

Transfers a record from the file to the program. The data is made
available to the program once the read has been successfully
completed.

Transfers a record from the program to the file.

WRITE-READ Combines the WRITE and READ operations as one operation.

UPDATE

DELETE

Updates a record with changed data. The record must have been
successfully read prior to the update operation.

Deletes a record in a file. The record must have been successfully
read prior to the delete operation.

Commitment Control

COMMIT

ROLLBACK
Completion

FEOD

RELEASE

CLOSE

Guarantees a group of changes are made as a complete trans-
action across multiple records and/or multiple files.

Rolls back a group of changes to the last commit point.

Positions the file at the last volume or at the end of data. For
those programs processing files for output, the last buffer of data
is written. For those programs processing files for input, an end-
of-file condition is forced for the next input operation.

Detaches a device or a communications session from an open file.
1/0 operations can no longer be performed for this device or
session.

Detaches a file from a program, ending 1/0 operations. Any
remaining data in the output buffer that has not been written will
be written prior to the completion of the close.

The operations listed above have certain restrictions based on file type and lan-
guage support. For example, a program may not write to a file that has been
opened for read only. Similarly, a read-by-key may not be issued for an ICF file.

Chapter 1. File Processing 1-15

Since file overrides can occur during processing (see Chapter 2, “Overrides and
File Redirection” for additional information), an operation may not be allowed for
the type of file that is ultimately being processed.

1-16 Data Management Guide

Table 1-1 lists the file types and the main operations that are allowed. There is
additional function supported for some file types that is accomplished by additional
operations or modifications to these operations. For information on these additional
functions and how the operations given here apply to display, printer, tape, and
diskette files, refer to the appropriate chapter elsewhere in this manual. For equiv-
alent information for database, ICF, DDM, and save files, refer to the Database
Guide, the Communications Programmer’s Guide, the DDM User’s Guide, and the
Backup and Recovery Guide, respectively.

Table 1-1. File Types and Their Main Operations

File Types
Operation Database Diskette Tape Printer Display ICF DDM Save
OPEN
Read X X X - X X X X
Write X X X X X X X X
Update X - - - xX* - X -
Delete X - - - X* - X -
READ
By relative X - - - X* X -
record number
By key X - - - - - X -
Sequential X X X - X X X X
Previous X - X - X* - X -
Next X X X - X X X X
Invited
Device - - - - X X - -
WRITE-
READ - - - - X X - -
WRITE
By relative X - - - X* - X -
record number
By key X - - - - - X -
Sequential X X X X X X X X
FEOD X X X X - - X X
UPDATE
By relative X - - - X* - X -
record number
By key X - - - - - X -
DELETE
By relative X - - - - - X -
record number
By key X - - - - - X -
ACQUIRE - - - - X X - -
RELEASE - - - - X X - -
COMMIT X - - - - - - -
ROLLBACK X - - - - - - -
CLOSE X X X X X X X X

* Operation allowed only for subfile record formats

Chapter 1. File Processing

117

Table 1-2 maps the 0S/400-supported operations given in Table 1-1 on page 1-17
to the high-level language operations (RPG/4005, PL/I, COBOL/4005, BASIC,
PASCAL, and C/400%) supported on the system. For additional information on each
operation and how it correlates to the file declaration in the program, see the appro-
priate language manual. Note that not all 0S/400 operations are supported in all
languages.

Table 1-2. High-Level Languages and Their 0S/400 Operations

High-Level Languages
Operation RPG/400 PL/ COBOL/400 BASIC PASCAL C/400
OPEN
Read OPEN, primary OPEN INPUT OPEN INPUT OPEN INPUT RESET, GET, fopen
file READ, READLN
Write OPEN, primary OPEN OUTPUT OPEN OUTPUT, OPEN OUTPUT REWRITE, WRITE, fopen
file OPEN EXTEND WRITELN
Update OPEN, primary OPEN UPDATE OPEN I-O OPEN OUTIN UPDATE fopen
file
Delete OPEN, primary OPEN UPDATE OPEN I-O OPEN OUTIN UPDATE fopen
file
READ
By relative READ, CHAIN READ KEY READ READ REC GET, READ -
record number
By key READ, READE, READ KEY READ KEY READ KEY - -
CHAIN
Sequential READ, primary READ NEXT, READ READ NEXT, GET, READ, fread, fgetc, fgets
file GET GET READLN QXXPGMDEV QXXFORMAT
Previous READP READ PRV READ READ PRIOR GET, READ, -
READLN
Next READ, READE READ NXT, READ, READ READ NEXT GET, READ, fread
GET NEXT GET READLN
Invited
Device READ - READ - - QXXREADINVDEV
WRITE-
READ EXFMT - - - - -
WRITE
By relative WRITE, EXCPT WRITE KEY WRITE WRITE REC PUT, WRITE, -
record number primary file WRITELN
By key WRITE, EXCPT WRITE KEY WRITE WRITE - -
Sequential WRITE, EXCPT WRITE, PUT WRITE WRITE PUT, WRITE, fread, fputc, fputs
primary file WRITELN QXXPGMDEV QXXFORMAT
FEOD FEOD - - - - -
UPDATE
By relative UPDAT, REWRITE KEY REWRITE REWRITE REC PUT, WRITE -
record number primary file WRITELN
By key UPDAT, REWRITE KEY REWRITE REWRITE KEY - -
primary file
DELETE
By relative DELET, DELETE KEY DELETE DELETE REC - -
record number primary file
By key DELET, DELETE KEY DELETE DELETE KEY - -
primary file
ACQUIRE ACQ - ACQUIRE - - QXXACQUIRE
RELEASE REL - DROP - - QXXRELEASE
COMMIT COMIT PLICOMMIT COMMIT - use CL COMMIT QXXCOMMIT
subroutine
ROLLBACK ROLBK PLIROLLBACK ROLLBACK - ’ use CL QXXROLLBCK
subroutine ROLLBACK
CLOSE CLOSE, RETRN CLOSE, STOP CLOSE, STOP CLOSE, END CLOSE, END fclose
RUN, CANCEL

5 (C/400, COBOL/400, and RPG/400 are trademarks of the International Business Machines Corporation.

1-18 Data Management Guide

Security Considerations

This section describes some of the file security functions. The topics covered
include the authorizations needed to use files and considerations for specifying
these authorities when creating a file. For more information about using the secu-
rity function on the system, see Security Concepts and Planning.

File Object Authority

The following describes the types of authority that can be granted to a user for a file:

Object Operational Authority: Object operational authority is required to:

¢ Open the file for processing. You must also have read authority to the file. For
device files that are not using spooling, you must have object operational and
also all data authorities to the device.

e Compile a program which uses the file description.

¢ Display the file description.

¢ Delete the file.

¢ Transfer ownership of the file.

e Grant and revoke authority.

¢ Change the file description.

¢ Move or rename the file.

Object Existence Authority: Object existence authority is required to:

¢ Delete the file.
® Save, restore, and free the storage of the file.
¢ Transfer ownership of the file.

Object Management Authority: Object management authority is required to:

¢ Grant and revoke authority. You can grant and revoke only the authority that
you already have.

¢ Change the file description.

* Move or rename the file.

File Data Authorities
Data authorities can be granted to a file. You need:

* Read authority to open any file for input, compile a program using the file, or
display the file description.

* Add authority to open a database file and save file for output.

¢ Update authority to open a database file for update.

¢ Delete authority to open a database file for delete.

For files other than database and save files, the add, update, and delete authorities
are ignored.

Chapter 1. File Processing 1-19

Authorities Required for File Operations
Table 1-3 lists the file object authority and the data authority required for file func-
tions. This is the same information that was presented in the previous two sections,
but it is listed by function rather than by authority.

Table 1-3. Object Authority and Data Authority Required for File Operations

Object Object Object
Function Operational Existence Management Read Add Update Delete
Open, 1/0, close file1 X X X2 X3 X3
Compile a program X X
using the file description
Display file description X X
Delete file
Save/restore
Transfer ownership X
Grant/revoke authority X X
Change file description X X
Move file X X
Rename file X X

1 For device files that are not using spooling, you must also have object operational and all data authorities to the

device.

2 Open for output for database and save files.

3 Open for update or delete for database files.

Specifying Authorities when Creating Files
When you create a file, you can specify public authority through the AUT parameter
on the create command. Public authority is authority available to any user who
does not have specific authority to the file or who is not a member of a group that
has specific authority to the file. That is, if the user has specific authority to a file or
the user is a member of a group with specific authority, then the public authority is
not checked when a user performs an operation to the file. Public authority can be
specified as:

@

*CHANGE. All users that do not have specific user or group authority to the file
have authority to use the file. The *CHANGE value is the default public
authority. *CHANGE grants any user object operational and all data authorities.

*USE. All users that do not have specific user or group authority to the file have
authority to use the file. *USE grants any user object operational and read data
authority.

*EXCLUDE. Only the owner, security officer, users with specific authority, or
users who are members of a group with specific authority can change or use the
file.

1-20 Data Management Guide

e *ALL. All users that do not have specific user or group authority to the file have
all data authorities along with object operational, object management, and
object existence authorities.

¢ Authorization list name. An authorization list is a list of users and their authori-
ties. The list allows users and their different authorities to be grouped together.

You can use the Edit Object Authority (EDTOBJAUT), Grant Object Authority
(GRTOBJAUT), or Revoke Object Authority (RVKOBJAUT) commands to grant or
revoke the public authority of a file.

Sharing Files in the Same Job

By default, the system lets one file be used by many users and more than one job at
the same time. The system allocates the file and its associated resources for each
use of the file in such a way that conflicting uses are prevented.

Within the same job, files can be shared if one program opens the same file more
than once or if different programs open the same file. Even though the same file is
being used, each open operation creates a new path from the program to the data or
device, so that each open represents an independent use of the file.

Historically, the file sharing just discussed was the limit of the file sharing available.
However, 0S/400 data management support offers another closer level of sharing
within a job that allows more than one program to share the same path to the data
or device.

This level of sharing is available by specifying the SHARE parameter on the create
file, change file, and override file commands. Using the SHARE parameter allows
more than one program to share the file status, positions, and storage area, and can
improve performance by reducing the amount of main storage the job needs and by
reducing the time it takes to open and close the file.

Using the SHARE(*YES) parameter lets an open data path (ODP) be shared between
two or more programs running in the same job. An open data path is the path
through which all input/output operations for the file are performed. It connects the
program to a file. If not specified otherwise, every time a file is opened a new open
data path is built. You can specify that if a file is opened more than once and an
open data path is still active for it in the same job, the active ODP for the file can be
used with the current open of the file, and a new open data path does not have to be
created. This reduces the amount of time required to open the file after the first
open, and the amount of main storage required by the job. SHARE(*YES) must be
specified for the first open and other opens of the same file for the open data path to
be shared. A well-designed (for performance) application will normally do a shared
open on database files that will be opened in multiple programs in the same job.
Specifying SHARE(*YES) for other files depends on the application.

Sharing files allows you to have programs within a job interact in ways that would
otherwise not be possible. However, you should read the considerations for open,
I/0, and close in this section and in the appropriate manuals for all the file types to
understand how this support works and the rules programs must follow to use it cor-
rectly.

Note: Most high-level language programs process an open or a close operation
independent of whether or not the file is being shared. You do not specify
that the file is being shared in the high-level language program. You indicate

Chapter 1. File Processing 1-21

that the file is being shared in the same job through the SHARE parameter.

The SHARE parameter is specified only on the create, change, and override
file commands. Refer to your appropriate language manual for more infor-

mation.

Open Considerations for Files Shared in a Job
The following items should be considered when opening a file that is shared in the
same job by specifying SHARE(*YES).

* You must make sure that when the shared file is opened for the first time in a
job, all the open options that are needed for subsequent opens of the file are
specified. If the open options specified for subsequent opens of a shared file do
not match those specified for the first open of a shared file, an error message is
sent to the program. (You can correct this by making changes to your program
to remove any incompatible options.)

For example, PGMA is the first program to open FILE1 in the job and PGMA only
needs to read the file. However, PGMA calls PGMB which will delete records
from the same shared file. Because PGMB will delete records from the shared
file, PGMA will have to open the file as if it, PGMA, is also going to delete
records. You can accomplish this by using the correct specifications in the high-
level language. (In order to accomplish this in some high-level languages, you
may have to use file operation statements that are never run. See your appro-
priate language manual for more details.)

e Sometimes sharing a file within a job is not possible. For example, one
program may need records from a file in arrival sequence and another program
may need the records in keyed sequence. Or, you may use the same file for
printing output, but want the output from each program to be produced sepa-
rately. In these situations, you should not share the open data path. You would
specify SHARE(*NO) on the override command to ensure that the file was not
shared within the job.

e |f debug mode is entered with UPDPROD(*NO) after the first open of a shared
file in a production library, subsequent shared opens of the file share the ori-
ginal open data path and allow the file to be changed. To prevent this, specify
SHARE(*NO) on the override command before opening files while debugging
your program.

e The use of commitment control for the first open of a shared file, requires that
all subsequent shared opens also use commitment control.

e |f you did not specify a library name in the program or the override command
(*LIBL is used), the system assumes that the library list has not changed since
the last open of the same shared file with *LIBL specified. If the library list has
changed, you should specify the library name on the override command to
ensure that the correct file is opened.

e Overrides and program specifications specified on the first open of the shared
file are processed. Overrides and program specifications specified on subse-
quent opens, other than those that change the file name or the value specified
on the SHARE or LVLCHK parameters on the override command, are ignored.

1-22 Data Management Guide

Input/Output Considerations for Files Shared in a Job

The system uses the same input/output area for all programs sharing the file, so the
order of the operations is sequential regardless of which program does the opera-
tion. For example, if Program A is reading records sequentially from a database file
and it reads record 1 just before calling Program B, and Program B also reads the
file sequentially, Program B reads record 2 with the first read operation. If Program
B then ends and Program A reads the next record, it receives record 3. If the file
was not being shared, Program A would read record 1 and record 2, and Program B
would read record 1.

For device files, the device remains in the same state as the last I/O operation.

For display and ICF files, programs other than the first program that opens the file
may acquire more display or program devices or release display or program
devices already acquired to the open data path. All programs sharing the file have
access to the newly acquired devices, and do not have access to any released
devices.

Close Considerations for Files Shared in a Job

The processing done when a program closes a shared file depends on whether
there are other programs currently sharing the open data path. If there are other
programs, the main function that is performed is to detach the program requesting
the close from the file. For database files, any record locks held by the program are
also released. The program will not be able to use the shared file unless it opens it
again. All other programs sharing the file are still attached to the ODP and can
perform 1/O operations.

If the program closing the file is the last program sharing the file, then the close
operation performs all the functions it would if the file had not been opened with the
share option. This includes releasing any allocated resources for the file and
destroying the open data path.

The function provided by this last close operation is the function that is required for
recovering from certain run-time errors. If your application is written to recover
from such errors and it uses a shared file, this means that all programs that are
attached to the file when the error occurs will have to close the file. This may
require returning to previous programs in the program stack and closing the file in
each one of those programs.

Allocating File Resources

When a high-level language program uses a file, several operations require that the
system allocate the resources needed to perform that operation. This is generally
done to ensure that multiple users do not use the file in conflicting ways. For
example, the system will not allow you to delete a file while any application
program is using it. This is prevented because when the file was opened, the
system obtained a lock on the file. The delete file operation also attempts to get a
lock on the file and is unsuccessful because the program using the file still has the
lock from when the file was opened, and the locks conflict.

When you write a high-level language program, you should be aware of what
resources are allocated for each file type. Normally, the system will perform the
allocation whenever an operation is requested that requires it. For example, the
resources for each file used in a program are allocated when the file is opened. If

Chapter 1. File Processing 1-23

you prefer to ensure that all the resources that are needed by a program are avail-
able before the program is run, you may use the Allocate Object (ALCOBJ) CL
command in the job prior to running the program. In particular, the ALCOBJ
command can allocate database files and most devices.

Examples of operations that require resource allocation are:

e Open
* Acquire
* Starting a program on a remote system

The file resources that must be allocated depend on the type of file and the opera-
tion being performed. File resources consist of the following:

e Open

— For printer and diskette files that are spooled (SPOOL(*YES)), the file
resources include the file description, the specified output queue, and
storage in the system for the spooled data. Because the data is spooled,
the device need not be available.

— For database files, the file resources consist of the entire file, including the
file, member, data, and the associated access path.

— For printer and diskette files that are not spooled (SPOOL(*NOQ)) as well as
for tape files, display files, and some ICF files, the file resources include the
file description and the device. For ICF files that use APPC, APPN, or intra-
system communications, the file resources include the file description and
the session resources associated with the device.

— For save files, the file resources consist of the entire file, including the file
and data.

— For DDM files, the file resources include the file description and the session
resources associated with the device.

® Acquire operation

For display files and ICF files not using APPC/APPN, or intrasystem communica-
tions, the device is allocated as a resource. For ICF files using APPC/APPN, or
intrasystem communications, resources include the session resources associ-
ated with the device.

¢ Starting a program on a remote system

Session resources needed for APPC and APPN.

When allocating resources, the system waits for a predefined time if the resources
are not immediately available. If the resources do not become available within the
time limit, an error is generated. If you are using the ALCOBJ command, the
command fails. If your program is performing a file operation, that operation fails
and an error message is sent to the program message queue. You may attempt to
use the error handling functions of your high-level language to try the operation
again. For example, if an open operation fails because another job is using the
device associated with the file, you could retry the open operation a specified
number of times, in the hope that the other job would finish with the device and your
program would then be able to use it.

The length of time that the system waits when allocating resources is specified on
the ALCOBJ command and on the WAITFILE parameter of the CL command used to
create the file. If the ALCOBJ command is used prior to running a program, then the

1-24 Data Management Guide

value of the WAITFILE parameter does not matter, because the resources will be
available.

The following chart describes the values allowed for the WAITFILE parameter:

Values Definition
*IMMED This value specifies that no wait time is allowed. An imme-
diate allocation of the file resources is required.

*CLS The job default wait time is used as the wait time for the file
resources to be allocated.

number-of-seconds Specify the maximum number of seconds that the program is
to wait for the file resources to be allocated. Valid values are
1 through 32767 (32 767 seconds).

If your application has error handling procedures for handling device errors occur-
ring on device files, you should specify a value of something other than *IMMED to
allow the system to recover from the error. The allocation of resources requested
by your program on an open or acquire operation that allows your program to
recover from the error will not be successful until the system recovery procedures
have been completed for the device.

Opening Files

When an application wants to use a file, it does so by referring to that file by name.
The file description for that file will then control how the program and the system
will interact.

An application program has an option as to how the file description is used. The
program may choose to use the description as it currently exists. In this case, the
system uses the file description as is, without any change. A number of parameters
contained in a file description can be changed, however. Therefore, the second
option the application has is to change some or all of these parameters. A change
made to a file description can be permanent or temporary. Permanent changes are
discussed in “Changing a File Description” on page 1-14. :

Temporary changes can provide greater flexibility to the application. Temporary
changes are made when the program is first establishing a path to the file by
opening the file. Temporary changes can be made in one of two ways:

¢ By information that is specified within the program itself and which is passed as
parameters on the open operation.

e By using override CL commands in the input stream that is used to set up.the
run-time environment for the application.

The ability to use the first way depends very much on which programming language
is used to write the program. Some programming languages do not allow you to
control the open process to any great exient. These languages do the open process
more or less automatically and control what information gets passed. Other lan-
guages allow you to have greater control over the open process.

The second option can be used regardiess of which programming language you use.
Override CL commands are provided for each file type. By including override com-

mands with the application, you may temporarily change the file description in a file
that the program wants to use.

Chapter 1. File Processing 1-25

Both options can be used together. Some parameters can be changed by informa-
tion contained in the application while others can be changed by using an override
command. The same parameter may be changed from both places. The operating
system follows this order when making temporary changes to a file:

1. The file description provides a base of information.

2. Change information received from the application during the open process is
applied first to the base information.

3. Change information found in the override command is applied last. If the same
information is changed from both places, the override has precedence.

Temporary changes are seen only by the application that causes the change to be
made. The file, as seen by another application, remains unchanged. In fact, two

applications may use the same file at the same time, and each may change it tem-
porarily according to its needs. Neither application is aware the other has made a

temporary change. Figure 1-6 and Figure 1-7 illustrate the permanent and tempo-
rary change processes.

Before Change After Change

Change Command used to
Change P1to END

File Z l

File Z

P1 = PAGE P1 = END

All Applications
See the parameter
P1 Value of PAGE

All Applications
See the Parameter

P1 Value of END
v

1

Figure 1-6. Permanently Changing a File

1-26 Data Management Guide

1

Application Application
Program Program
N N
Application Application
Program Program
Application Application
Program Program

RSLH143-1

Application 1

Override CL command
changes parameter P2
to END

Application program

Open changes
parameter P1

Application 2

Override CL command
changes parameter P2

to IMD
Application Program
Open changes
parameter P3
to 10
v
Opened File
P1 = RPT
> P2 = IMD
P3 = 10

P3

o n

RPT

NEXT
30

to QRT
v
Opened File

P1 = QRT

P2 = END |«

P3 = 30

File
P1
P2
Figure 1-7. Temporarily Changing a File

RSLH196-0

Once an application establishes a connection between itself and the file by opening
the file, it can then proceed to use the file for either input or output operations. In
the case of a database file, the open process establishes a path between the appli-
cation and the actual database file. For device files, a path is established between
the application and the actual device, or to a spooled file if the spooling attribute is
active for the device file. In all cases, the application is connected to what it wants
to use, and those connections determine what input or output operations are valid.
Not all operations are valid with all file types. The application must be aware of
what file types it uses and then use only those operations which are valid for those

types.

Chapter 1. File Processing

1-27

Detecting File Description Changes

When a program that uses externally described files is compiled, the high-level lan-
guage compiler extracts the record-level and field-level descriptions for the files
referred to in the program and makes those descriptions part of the compiled
program. When you run the program, you can verify that the descriptions with
which the program was compiled are the current descriptions.

The system assigns a unique level identifier for each record format when the file it
is associated with is created. The system uses the following information to deter-
mine the level identifier:

Record format name

Field name

Total length of the record format

Number of fields in the record format

¢ Field attributes (for example, length and decimal positions)
¢ Order of the field in the record format

Display, printer, and ICF files may also use the number of and order of special fields
called indicators to determine the level identifier.

It you change the DDS for a record format and change any of the items in the pre-
ceding list, the:level identifier changes.

To check the record format identifiers when you run the program, specify
LVLCHK(*YES) on the create or change file commands.

The level identifiers of the file opened and the file description that is part of the com-
piled program are compared when the file is opened and LVLCHK(*YES) is speci-
fied. The system does a format-by-format comparison of the level identifiers. If the
identifiers differ or if any of the formats specified in the program do not exist in the
file, a message is sent to the program to identify the condition.

When the identifiers differ, this means that the format was changed and the changes
may affect your program. You can compile the program again so that the changes
are included, or you can determine if the changes affect your program before
deciding what action to take. There are several CL. commands available to you to
check the changes. You can use the Display File Field Description (DSPFFD)
command to display the record-level and field-level descriptions or, if you have the
source entry utility (SEU), you can dispiay the source fiie containing the DDS for the
file. The format level identifier defined in the file can be displayed by the Display
File Description (DSPFD) or the DSPFFD commands. The format level identifier
which was used when the program was created can be displayed by the Display
Program References (DSPPGMREF) command.

If the changes do not affect your program, you can enter an override command with
LVLCHK(*NO) specified so that you can process your program. If LVLCHK(*NO) is
specified, the system does not perform the level identifier check when the file is
opened. For example, if a field is added to the end of a record format, but the
program does not use the new field, the program does not have to be created again,
even though the record identifier has changed.

There are also some changes to a file description that will not cause an error when

the file is opened. These can be caused because the record format identifiers did
not change or because your program does not use the changed formats. Formats

1-28 Data Management Guide

can be added to or removed from a file without affecting existing programs that do
not use the added or deleted formats.

Even though the level identifier does not change, some DDS functions that you add
or delete could require changes in the logic of your program. You should review the
functions you added or deleted to determine whether changes are required to the
program logic.

Normally, the use of LVLCHK(*YES) is a good file integrity practice. The use of
LVLCHK(*NO) can produce results that cannot be predicted.

Open and I/0 Feedback Area

The system keeps track of the status of a file in feedback areas once it is success-
fully opened. As operations are performed on a file, these feedback areas are
updated to reflect the latest status. These feedback areas give you greater control
over applications and provide important information when errors occur.

The feedback areas are established at open time, and there is one feedback area for
each open file. One exception is for shared files, which share feedback areas as
well as the data path between the program and the file. For more information on
shared opens, see “Sharing Files in the Same Job” on page 1-21.

Some high-level languages on the system allow you to access the status and other
information about the file against which operations are being performed. There are
two feedback areas of interest to you:

¢ Open feedback area

This area contains information of a general nature about the file after it has
been successfully opened. Examples include the name and library of the file
and the file type. See “Open Feedback Area” on page A-1for a complete list of
the information that can be retrieved from the open feedback area. In addition
to general information about the file, file-specific information is also contained
in the open feedback area after the file is opened. The applicable fields depend
on the file type.

The open feedback area also contains information about each device or commu-
nications session defined for the file.

¢ |nput/output feedback area
There are two sections of the I/O feedback area:

— Common area

Thic arna anntai
THIo Arva vwwiil

the file. This includes the number of operations and the last operation. See
“1/0 Feedback Area” on page A-11 for a complete list of the information that
can be retrieved from the common /O feedback area.

o

— File-dependent feedback area

This area contains file-specific information for display, database, printer,
and ICF files; for example, the major/minor return code and amount of data
received from the device. See “I/O Feedback Area for ICF and Display
Files” on page A-14, “I/O Feedback Area for Printer Files” on page A-18,
and “l/0 Feedback Area for Database Files” on page A-19 for a complete

Chapter 1. File Processing 1-29

list of the information that can be retrieved from the file-dependent I/0 feed-
back area.

The above information areas can be useful to you. For example, when an error
occurs with a device file, the program could determine predefined error handling
operations based on the major/minor return code in the file-dependent feedback
area. If data is being received from a communications device and the application on
the other end sends an error, the program could determine that the next operation
should be to wait until the next block of data is sent indicating the error. Possibly,
the next operation may be to close the file and end the conversation with the appli-
cation on the other side or wait for the next request from the application.

Another way might include detecting what type of file was actually opened to deter-
mine the type of operations that are allowed. If the file type is printer, only output
operations would be allowed.

Error Handling

This section describes error conditions that an application program may encounter
during its operation and the provisions that can be made within the program itself to
attempt to deal with these conditions. The CL Programmer’s Guide discusses how
to use the debug functions to resolve unexpected errors encountered in the applica-
tion programs. The chapter on handling problems in the Operator’s Guide
describes the programs that are available for analyzing and reporting system errors
and hardware failures.

Errors can be detected when a file is opened, when a program device is acquired or
released, during I/0 operations to a file, and when the file is closed. When appro-
priate, the system will automatically try to run a failing operation again, up to a retry
limit. When a retry is successful, neither operator nor program action is required.
Errors that can affect the processing of the program may be reported in any or all of
the following ways:

* A notify, status, diagnostic, or escape message may be sent to the program
message queue of the program using the file. These messages may also
appear in the job log, depending on the message logging level set for the job.

e A file status code may be returned by the high-level language.

* A major/minor return code is returned in the 1/0 feedback area for ICF, display,
and printer files. '

¢ A notify, status, diagnostic, or escape message may be sent to the operator
message queue (QSYSOPR) or the history message queue (QHST).

* Information regarding the error may be saved in the system error log for use by
the problem analysis and resolution programs.

* An alert message may be sent to an operator at another system in the network.

¢ The normal program flow may be interrupted and control may be transferred to
an error-handling subroutine, or other language operations may occur. For
additional information about how to handle run-time errors, see the appropriate
high-level language manual.

Only some of these are significant to a program that is attempting error recovery.

1-30 Data Management Guide

Not all file errors allow programmed error recovery. Some errors are considered
permanent; that is, the file, device, or program cannot work until some corrective
action is taken. This might involve resetting the device by varying it off and on
again, or correcting an error in the device configuration or the application program.
Some messages and return codes are used to inform the user or the application
program of conditions that are information rather than errors, such as change in the
status of a communications line, or system action taken for an unexpected condition.
In many cases, it is possible for the application program to test for an error condi-
tion and take some preplanned recovery action which allows the program to con-
tinue without intervention from the operator.

Messages and Message Monitors

Displayed messages are the primary source of information for an operator or a pro-
grammer who is testing a new application. A message usually contains more spe-
cific information than the file status code, the indicators, or the major/minor return
code. The control language allows messages to be monitored so that the CL
program can intercept a message and take corrective action. See the CL
Programmer’s Guide for more information about message types and message moni-
tors. In most high-level languages, either the file status code or major/minor return
code (described in the following section) is a more convenient source of informa-
tion.

Message numbers are assigned in categeries to make it easier for a program to
monitor for any of a group of related messages. The following message number
ranges are assigned for file error messages:

Table 1-4. OS/400 Data Management Message Number Ranges

Message IDs Operation Message Type

CPF4001 — 40FF Open Diagnostic and status.

CPF4101 — 43FF Open Escapes that make the file unusable.

CPF4401 — 44FF Close Diagnostic and status.

CPF4501 — 46FF Close Escapes that make the file unusable.

CPF4701 — 48FF 1/0, Acquire, and Notify with a default reply of cancel, status
Release and escapes that do not make the file or

device unusable.

CPF4901 — 49FF 1/0, Acquire, and Notify with a default reply of ignore.
Release

CPF5001 — 50FF 1/0, Acquire, and Notify with a default reply of cancel.
Release

CPF5101 — 53FF 1/0, Acquire, and - Escapes that make the file or device unus-
Release able.

CPF5501 — 56FF 1/0, Acquire, and Escapes that make the file or device unus-
Release able.

Some status messages, CPF4018 for example, are preceded by a diagnostic
message that provides additional information. Diagnostic messages may be kept in
the job log, depending on the message logging level of the job. If a CL program
monitors for CPF4018, CPF5041, or similar messages, it can retrieve the accompa-
nying diagnostic message from the program message queue.

Chapter 1. File Processing 1-31

If an error occurs for which an escape message is issued and the message is not
monitored, your program will be ended and the message displayed for the operator.
Status messages may also be monitored, but if they are not monitored, the program
continues. Most high-level languages except CL monitor for all the file errors that
are likely to be encountered, and provide some standard recovery. Depending on
the severity of the error, the high-level language may simply end the program and
issue a message of its own. Alternatively, the application programmer may code an
error recovery routine to handle errors that are anticipated in that particular appli-
cation.

Within these error-handling routines, it is usually necessary to examine the file
status or major/minor return codes to determine the cause of the error. The
manuals for the language you are using expiain how to access file status and
major/minor return codes. The language manuals also explain the file status codes
as they are defined for each language.

Major/Minor Return Codes

1-32

Major/minor return codes are used to report errors and certain status information
for ICF, display, and printer files. They are not used for other files. They are usually
stated as four characters: the first two referring to the major code and the second
two referring to the minor code. The major code indicates the general type of error,
and the minor provides further detail. Minor codes, except zero, have the same or a
similar meaning, regardless of the major code with which they are combined.

The application program can test the return code after each I/0 operation. If the
major return code is 00, the operation completed successfully and the minor return
code contains status information that indicates whether a read or a write operation
should be performed next. A major return code of 04 or above indicates that an
error occurred. The program may test for any specific errors for which programmed
recovery is attempted. The application program may test for a specific condition by
comparing the major and minor codes as a unit, or may identify a class of conditions
by testing the major code alone.

Most major/minor return codes are accompanied by any one of several message
numbers, for which the typical recovery action is similar. File status codes are
defined by the individual languages and may be set based on the major/minor
return codes.

The following chart defines the major return codes. Appendix C, “Display File
Return Codes” and Appendix D, “Printer File Return Codes” contain specific defi-
nitions of the major/minor return codes as they are used for display files and printer
files and the message numbers associated with each. Similar specific definitions
for each of the communication types valid on an ICF file can be found in the manuals
for each communication type.

Table 1-5 (Page 1 of 2). Major Return Code Definitions

Code Definition

00 The operation requested by your program completed successfully. The minor
includes state information, such as change direction.

02 Input operation completed successfully, but job is being ended (controlled). The
minor includes state information.

03 Successful input operation, but no data was received. The minor includes state
information.

Data Management Guide

Table 1-5 (Page 2 of 2). Major Return Code Definitions

Code Definition

04 Error occurred because an output operation was attempted while data was
waiting to be read.

08 An acquire operation failed because the device has already been acquired or
the session has already been established.

11 A read-from-invited-program-devices operation failed because no device or
session was invited.

34 An input exception occurred. The data length or record format was not-accept-
able for the program.

80 A permanent (nonrecoverable) system or file error occurred. Programmer
action is required to correct the problem.

81 A permanent (nonrecoverable) device or session error occurred during an I/O
operation. ’

82 A device or session error occurred during an open or acquire operation.
Recovery may be possible.

83 A device or session error occurred during an /O operation. Recovery may be
possible.

Actions for Error Recovery

The following sections describe the error recovery action that is appropriate for
each group of major return codes.

Normal Completion
A major/minor return code of 0000 indicates that the operation requested by your
program was completed successfully. Most of the time, no message is issued. In
some cases, a diagnostic message might be used to inform the user of some
unusual condition that the system was able to handle, but which might be consid-
ered an error under some conditions. For example, a parameter that is not valid
might be ignored, or some default action taken.

For communications devices, a major return code of 00, indicating successful com-
pletion with data received, is accompanied by a minor return code that indicates
what operation the application program is expected to perform next. The nonzero
minor does not indicate an error. No message is issued.

Completion with Exceptions
Several rather specific major return codes have been assigned to conditions for
which a specific response from the application program is appropriate.

A major return code of 02 indicates that the requested input operation completed
successfully, but the job is being ended (controlled). The application program
should complete its processing as quickly as possible. The controlled cancel is
intended to allow programs time to end in an orderly manner. If your program does
not end within the time specified on the ENDJOB command, the job will be ended by
the system without further notice.

A major return code of 03 indicates that an input operation completed successfully
without transferring any data. For some applications, this might be an error condi-
tion, or it might be expected when the user presses a function key instead of
entering data. It might also indicate that all the data has been processed, and the

Chapter 1. File Processing 1-33

application program should proceed with its completion processing. In any case,
the contents of the input buffer in the program should be ignored.

A major/minor code of 0309 is used to indicate that no data was received and the
job is being ended (controlled). A major/minor code of 0310 indicates that there is
no data because the specified wait time has ended. Other minor return codes
accompanying the 02 or 03 major code are the same as for a 00 major code, indi-
cating communications status and the operation to be performed next.

A major return code of 04 indicates that an output exception occurred. Specifically,
your program attempted to send data when there was data waiting to be received.
This is probably the result of not handling the minor return code properly on the pre-
vious successful completion. Your program can recover by simply receiving the
incoming data and then repeating the write operation.

A major return code of 34 indicates that an input exception occurred. The received
data was either too long or incompatible with the record format. The minor return
code indicates what was wrong with the received data, and whether the data was
truncated or rejected. Your program can probably handle the exception and con-
tinue. If the data was rejected, you may be able to read it by specifying a different
record format.

Two other return codes in this group, 0800 and 1100, are both usually the result of
application programming errors, but are still recoverable. 0800 indicates that an
acquire operation failed because the device has already been acquired or the
session has already been established. 1100 indicates that the program attempted to
read from invited devices with no devices invited. In both cases, the request that is
not valid is ignored, and the program may continue.

No message is issued with a 02 major code or most minor codes with the 03 major
code, but the other exceptions in this group are usually accompanied by a message
in the CPF4701 — CPF47FF or CPF5001 — CPF50FF range.

Permanent System or File Error
A major return code of 80 indicates a serious error affecting the file. The application
program must close the file and reopen it before attempting to use it again, but
recovery is unlikely until the problem causing the error is found and corrected. To
reset an error condition in a shared file by closing it and opening it again, all pro-
grams sharing the open data path must close the file. This may require returning to
previous programs in the program stack and closing the shared file in each of those
programs. The operator or programmer should refer to the text of the accompa-
nying message to determine what action is appropriate for the particular error.

Within this group, several minor return codes are of particular interest. A
major/minor code of 8081 indicates a serious system error for which an APAR prob-
ably will be required. The message sent with the major/minor return code may
direct you to run the Analyze Problem (ANZPRB) command to obtain more informa-
tion.

A major/minor code of 80EB indicates that invalid or incompatible options were
specified in the device file or as parameters on the open operation. In most cases
you can close the file, end the program, correct the parameter that is not valid with
an override command, and run the program again. The override command affects
only the job in which it is issued. It allows you to test the change easily, but you
may eventually want to change or re-create the device file as appropriate to make
the change permanent.

1-34 Data Management Guide

Permanent Device or Session Error on I/O Operation
A major return code of 81 indicates a serious error affecting the device or session.
This includes hardware failures affecting the device, communications line, or com-
munications controller. It also includes errors due to a device being disconnected
or powered off unexpectedly and abnormal conditions that were discovered by the
device and reported back to the system. Both the minor return code and the accom-
panying message provide more specific information regarding the cause of the
problem.

Depending on the file type, the program must either close the file and open it again,
release the device and acquire it again, or acquire the session again. To reset an
error condition in a shared file by closing it and opening it again, all programs
sharing the open data path must close the file. In some cases, the message may
instruct you to reset the device by varying it off and on again. It is unlikely that the
program will be able to use the failing device until the problem causing the error is
found and corrected, but recovery within the program may be possible if an alter-
nate device is available.

Some of the minor return codes in this group are the same as those for the 82 major
return code. Device or line failures may occur at any time, but an 81 major code
occurs on an /O operation. This means that your program had already established
a link with the device or session. Therefore, some data may have been transferred,
but when the program is started again, it starts from the beginning. A possible
duplication of data could result.

Message numbers accompanying an 81 major code may be in the range indicating
either an 1/0 or a close operation. A device failure on a close operation simply may
be the result of a failure in sending the final block of data, rather than action specific
to closing the file. An error on a close operation may result in the file being left
partially closed. Your error recovery program should respond to close failures with
a second close operation. The second close will always complete, regardless of
errors.

Device or Session Error on Open or Acquire Operation
A major return code of 82 indicates that a device or session error occurred during
an open or acquire operation. Both the minor return code and the accompanying
message will provide more specific information regarding the cause of the problem.

Some of the minor return codes in this group are the same as those for the 81 major
return code. Device or line failures may occur at any time, but an 82 major code
indicates that the device or session was unusable when your program first
attempted to use it. Thus no data was transferred. The problem may be the result
of a configuration or installation error.

Depending on the minor return code, it may be appropriate for your program to
recover from the error and try the failing operation again after some waiting period.
The number of times you try should be specified in your program. It may also be
possible to use an alternate or backup device or session instead.

Message numbers accompanying an 82 major code may be in the range indicating
either an open or an acquire operation. [f the operation was an open, it is neces-
sary to close the partially opened file and reopen it to recover from the error. If the
operation was an acquire, it may be necessary to do a release operation before
trying the acquire again. In either case, the file wait time should be specified long
enough to allow the system to recover from the error.

Chapter 1. File Processing 1-35

Recoverable Device or Session Errors on I/0 Operation
A major return code of 83 indicates that an error occurred in sending data to a

device or receiving data from the device. Recovery by the application program is
possible. Both the minor return code and the accompanying message provide more
specific information regarding the cause of the problem.

Most of the errors in this group are the result of sending invalid commands or data
to the device, or sending valid data at the wrong time or to a device that is not able
to handle it. The application program may recover by skipping the failing operation
or data item and going on to the next one, or by substituting an appropriate default.
There may be a logic error in the application.

. Related Information on File Types

| Refer to the following manuals for more information on the file types discussed in
| this chapter:

| e DDM files: DDM User’s Guide

| * |CF files: Communications Programmer’s Guide

| e Database files: Database Guide

| e Save files: Backup and Recovery Guide

| ¢ Display, printer, tape, and diskette files: Part 3, “Device File Support” of the
| Data Management Guide

1-36 Data Management Guide

Chapter 2. Overrides and File Redirection

Overrides are used to temporarily change a file name, a device name or remote
location name associated with the file, or some of the other attributes of a file.
Override commands may be entered interactively from a terminal or as part of a
batch job. They may be included in a control language (CL) program, or they may
be issued from other programs via a call to the program QCMDEXC. Regardiess of
how they are issued, overrides remain in effect only for the job, program, or ter-
minal session in which they are issued. Furthermore, they have no effect on other
jobs that may be running at the same time.

Overrides are particularly useful for making minor changes to the way a program
functions or for selecting the data on which it operates, without having to recompile
the program. Their principal value is in allowing you to use general purpose pro-
grams in a wider variety of circumstances. Examples of items where overrides may
be used are:

¢ Changing the name of the file to be processed

Selecting the database file member to be processed

Indicating whether output is to be spooled

Directing output to a different tape device

Changing printer characteristics such as lines per inch and number of copies
Selecting the remote location to be used with an ICF file

Changing the characteristics of a communications session

It is also possible to use overrides to direct data input or output to a device of a dif-
ferent type; for example, to send data that was intended for a diskette to a printer
instead. This use of overrides requires somewhat more foresight than the override
applications listed above, because the program must be able to accommodate the
different characteristics of the two devices involved. The special considerations
required for overrides that change the file type are discussed in “File Redirection”
on page 2-24.

There are two types of overrides: file overrides and program device entry over-
rides. They are discussed separately in the remainder of this chapter.

Overriding Files

When you create an application program, files are associated with it by the file
names specified in the program. The system lets you override these file names
and/or the attributes of the specified file when you compile a program or run a
program. The system supplies three override functions: applying overrides,
deleting overrides, and displaying overrides. You can process override functions
for files using the following CL commands:

DLTOVR Delete Override: Deletes one or more file overrides (including
message file overrides) that were previously specified in a call levei.

DSPOVR Display Override: Displays file overrides at any active call level for a
job.

OVRDBF Override with Database File: Overrides (replaces) the database file

named in the program, overrides certain parameters of a database file
that is used by the program, or overrides the file and certain parame-
ters of the file to be processed.

© Copyright IBM Corp. 1988, 1989 Chapter 2. Overrides and File Redirection 2-1

OVRDKTF Override with Diskette File: Overrides (replaces) the diskette file
named in the program, overrides certain parameters of a diskette file
that is used by the program, or overrides the file and certain parame-
ters of the file to be processed.

OVRDSPF Override with Display File: Overrides (replaces) the display file
named in the program, overrides certain parameters of a display file
that is used by the program, or overrides the file and certain parame-
ters of the file to be processed.

OVRICFF Override with Intersystem Communications Function File: Used to
override the file named in the program and override certain parame-
ters of the file being processed.

OVRMSGF Override with Message File: Used to override a message file used in
a program. The rules for applying the overrides in this command are
different from the other override commands. For more information on
overriding message files, see the CL Programmer’s Guide.

OVRPRTF Override with Printer File: Overrides (replaces) the printer file named
in the program, overrides certain parameters of a printer file that is
used by the program, or overrides the file and certain parameters of
the file to be processed.

OVRSAVF Override Save File: Overrides (replaces) the file named in the
program, overrides certain attributes of a file that is used by the
program, or overrides the file and certain attributes of the file to be
processed.

OVRTAPF Override with Tape File: Overrides (replaces) the file named in the
program, overrides certain attributes of a file that is used by the
program, or overrides the file and certain attributes of the file to be
processed.

Overrides may be used to change most, but not all, of the file attributes that are
specified when the file is created. In some cases, attributes may be specified in
overrides that are not part of the original file definition. Refer to the command
descriptions in the CL Reference for details.

The scope and function of an override command is determined in several ways by
its call level. (See “Call Level with Override Commands” on page 2-5.) In general,
overrides remain in effect from the time they are specified until they are replaced or
deleted, or until the program in which they are specified ends.

Overrides applied include any that are in effect at the time a file is opened by an
application program, when a program that opens a file is compiled, or when certain
system commands are used. (See “Applying Overrides when Using High-Level Lan-
guage Programs” on page 2-3, “Applying Overrides when Compiling a Program” on
page 2-14, and “Effect of Overrides on Some System Commands” on page 2-15).
Thus any overrides that are to be applied must be specified either before the file is
opened by a program or before a program that opens the file is compiled. It is not
necessary that overrides be supplied for every file used in a program. Any file
name for which no override is supplied is used as the actual file name.

Overriding a file is different from changing a file in that an override does not perma-
nently change the attributes of a file. For example, if you override the number of
copies for a printer file by requesting six copies instead of two, the file description
for the printer file still specifies two copies, but six copies are printed. The system

2-2 Data Management Guide

uses the file override command to determine which file to open and/or what its file
attributes are.

Handling overrides for message files is different in some respects from handling
overrides for other files. Only the name of the message file, not the attributes, can
be overridden. For more information on message handling, refer to the CL
Programmer’s Guide.

Applying Overrides when Using High-Level Language Programs

There are three different types of file overrides. These are discussed in the fol-
lowing sections.

Overriding File Attributes
The simplest form of overriding a file is to override some attributes of the file. File
attributes are built as a result of the following:

¢ Create file and add member commands. Initially, these commands build the file
attributes.

¢ Program using the files. At compile time, the user program can specify some of
the file attributes. (The attributes that can be specified depend on the high-level
language in which the program is written.)

e Override commands. At program run time, these commands can override the
file attributes previously built by the merging of the file description and the file
parameters specified in the user program.

For example, assume that you create a printer file OUTPUT whose attributes are:

Page size of 66 by 132

Six lines per inch

Two copies of printed output
Two pages for file separators
Overflow line number of 55

The Create Printer File (CRTPRTF) command looks like this:
CRTPRTF FILE(QGPL/OUTPUT) SPOOL(*YES) +

PAGESIZE(66 132) LPI(6) +

COPIES(2) FILESEP(2) OVRFLW(55)

The printer file OUTPUT is specified in your application program with an overflow
line number of 58. However, before you run the application program, you want to
change the number of copies of printed output to 3 and the overflow line to 60. The
override command looks like this:

OVRPRTF FILE(OUTPUT) COPIES(3) OVRFLW(60)

Then you call the application program, and three copies of the output are printed.

When the application program opens the file, the file overrides, program-specified
attributes, and file attributes are merged to form the open data path (ODP) which is
used during the running of the program. File overrides have precedence over
program-specified attributes. Program-specified attributes have precedence over
file-specified attributes. In this example, when the file is opened and output oper-
ations are performed, spooled output will be produced with a page size of 66 by 132,
six lines per inch, three copies, two file separator pages, and overflow at 60 lines.

Chapter 2. Overrides and File Redirection 2-3

The following chart explains this example:

Program A File OUTPUT

SPOOL(*YES)
PAGESIZE(66 132)
(LPI(6)

TP
Open OUTPUT COPIES(2)
' FILESEP(2)
OVRFLW(55)

Program-Specified
Attributes Open Data Path

SPOOL(*YES)

PAGESIZE(66 132) EQI?GE)SIZE(GG 132)

OVRFLW(58) (| CoPIES(3)
FILESEP(2)

OVRFLW(60)
Override Command

COPIES(3)
OVERFLW(60)

RSLH179-*

Overriding File Names or Types
Another simple form of overriding a file is to change the file that is used by the
program. This may be useful for files that have been moved or renamed after the
program has been compiled. For example, you want the output from your applica-
tion program to be printed using the printer file REPORTS instead of the printer file
OUTPUT (OUTPUT is specified in the application program). Before you run the
program, enter the following:

OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)

The file REPORTS must have been created by a CRTPRTF command before it can
be used.

If you want to override to a different type of file, you use the override command for
the new type of file. For example, if you are overriding a diskette file with a printer
file, use the Override with Printer File (OVRPRTF) command.

Use the information under “File Redirection” on page 2-24 to determine if files can
be overridden to another type of file.

2-4 Data Management Guide

Overriding File Names or Types and File Attributes of the New File
This form of overriding files is simply a combination of overriding file attributes and
overriding file names or types. With this form of override, you can override the file
that is to be used in a program and you can also override the attributes of the over-
riding file. For example, you want the output from your application program to be
printed using the printer file REPORTS instead of the printer file OUTPUT (OUTPUT
is specified in the application program). In addition to having the application”
program use the printer file REPORTS, you wish to override the number of copies
produced to three. Assume the file REPORTS was created with the following
command:

CRTPRTF FILE(REPORTS) SPOOL(*YES) +
PAGESIZE (68 132) LPI(8) +
OVRFLW(60) COPIES(2) FILESEP(1)

Before you run the program, type the following command:
OVRPRTF FILE(OUTPUT) TOFILE(REPORTS) COPIES(3)

Then call the application program, and three copies of the output are produced
using the printer file REPORTS.

Note that this is not equal to the following two override commands:

Override 1 OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)
Override 2 OVRPRTF FILE(REPORTS) COPIES(3)

Only one override is applied for each call level for an open of a particular file, so if
you want to override the file that is used by the program and also override the attri-
butes of the overriding file from one call level, you must use a single command. If
two overrides are used, override 1 will cause the output to be printed using the
printer file REPORTS, but override 2 will be ignored.

Call Level with Override Commands
Call levels identify the subordinate relationships between related programs when
one program is called from another program. For example:

Call Level1 PGM A
XXXXXX
XXXXXX
CALL PGM B

Call Level 2 PGM B
XXXXXX
XXXXXX
TFRCTL PGM C

PGM C
XXXXXX
XXXXXX
CALL PGM D

Cali Level 3 PGM D

XXXXXX
RETURN

Chapter 2. Overrides and File Redirection ~ 2-5

Several commands, such as Work with Job (WRKJOB), Work with Active Jobs
(WRKACTJOB), or Display Job (DSPJOB), have options that allow you to display the
program stack of an active job. There is a one-to-one relationship between a
program displayed in the program stack and the call level for that program. The
first program name displayed (at the top of the list) on the program stack is the
program at call level 1 for that job. The second program name displayed is the
program at call level 2 for that job. The last program name displayed is the
program at the highest call level for that job.

In the previous example, the TFRCTL to PGMC causes PGMB to be removed from
the program stack and replaced by PGMC. A call causes another program to be
placed in the program stack. A return causes a program to be removed from the
stack.

Call levels affect override processing by the following general principles. Specific
examples of each can be found throughout this chapter.

° An override command entered interactively exists at the call level of the caller
of that command processor. For example, an override entered on the command
entry display cannot be deleted or replaced from a command processor called
from the command entry display.

e The call level of an override coded in a CL program is the call ievel of the CL
program.

e An override outside a program in a batch job takes the call level of the batch job
command processor.

¢ |f an override command is run via a call to the QCMDEXC program, the override
takes the call level of the program that called the QCMDEXC program.

e Exits (ENDPGM, RETURN, or abnormal exits) from a call will delete overrides at
that call level. For example, a RETURN command deletes all overrides at that
call level. Thus, overrides in called programs that end with a RETURN or
ENDPGM command do not apply to the calling program. This is not true for pro-
grams using the Transfer Control (TFRCTL) command.

In the following example, the RETURN command deletes the override in
program B, and FILE X is opened in program A.

Program A Program B

CALL PROG B OVRDBF FILE(X) TOFILE(Y)

Open FILE X \ RETURN

P7730133-0

¢ As long as a program is running at the same call level that requested an over-
ride, that override stays in effect unless it is deleted. The TFRCTL command
causes one program to be replaced by another program at the same call level.
The program, to which control is transferred, runs at the same call level as the

2-6 Data Management Guide

program that contained the TFRCTL command. An override command in a
program that transfers control to another program is not deleted during the
transfer of control.

In the following example, the override in program A is applied to the open oper-
ation in program C because the TFRCTL command keeps the call level. FILEY
is opened. The override in program B is deleted.

Program A Program B
CALL PROG B / OVRDBF FILE(Y) TOFILE(Z)
OVRDBF FILE(X) TOFILE(Y) \ .
° RETURN
TFRCTL PGM (C) B
Program C
Open FILE X

P7730134-0

Several overrides to a single file, each at a different call level, are allowed and
are applied by the system in inverse call level order. For example, an override
to a file at call level 3 is overridden by the override to that file encountered at
call level 2, and so on. The final authority for any attribute is the outermost
level of call nesting which specifies that attribute. For example, a user at a ter-
minal calls a CL program which then calls an RPG program. Any attributes not
overridden by the user are taken from an override in the CL program, if present.
Any remaining attributes are taken from the RPG program, or finally, the device
file or database file.

If these overrides change file types and attributes, the attributes applied to the
file opened are only those specified by overrides for the same file type as the
file actually opened.

You can protect an override from being overridden by overrides at lower call
levels by coding SECURE(*YES) on it.

When overrides are applied, only one override can be used from a call level for
any particular file. If two or more overrides for the same file are requested at
the same call level, the last override makes the others obsolete. This is true
even if the override involves a name change, as the following example illus-
trates. It is really one file that is being overridden, and therefore only one over-
ride is allowed at each level.

Chapter 2. Overrides and File Redirection 2=7

In the following example, when the program attempts to open FILE A, FILE A is
overridden with FILE B because of override 2. Because only one override can
be applied for each call level, override 1 is ignored, and the file opened by the
program is FILE B.

PGM:
Override 1 6VRDBF FILE(B) TOFILE(C)
Override 2 OVRDBF ~ FILE(A) TOFILE(B)
(.)PEN FILE A
I.ENDPGM

To open FILE C, replace the two Override with Database File (OVRDBF) commands
with the following command:

OVRDBF FILE(A) TOFILE(C)

This does not prevent applying an override at the same call level in which the file is
created. File attributes on the override take the place of corresponding attributes on
the file create statement, regardless of which is encountered first.

Applying Overrides at the Same Call Level
As long as a program is running at the same call level that requested an override,
that override stays in effect unless it is deleted (see “Deleting Overrides” on
page 2-17) or replaced by another override requested from the same call level. In
the following example, program A transfers control to program B, and program B
runs in the same call level as program A. The Override with Database File
(OVRDBF) command causes the file to be positioned at the last record of the
member when it is opened and is used for both programs A and B.

CALL PGM(A)
Program A:
OVRDBF FILE(INPUT) POSITION(*END)

(INPUT is opened and positioned at the last record of the member and closed after
processing.)

TFRCTL PGM(B)
Program B:

(INPUT is opened and positioned at the last record of the member.)

2-8 Data Management Guide

When two overrides are entered for the same file name at the same call level, the
second override replaces the first override. This allows you to replace an override
at a single call level, without having to delete the first override (see “Deleting
Overrides” on page 2-17). For example:

Override 1 OVRDKTF FILE(QDKTSRC) LABEL(X)
CALL PGM(REORDER)

Override 2 OVRDKTF FILE(QDKTSRC) LABEL(Y)
CALL PGM(REORDER)

Assume that program REORDER uses the diskette file QDKTSRC. Override 1
causes the first call to program REORDER to use the source file with a label of X for
its processing. Override 2 causes the second call to program REORDER to use the
source file with a label of Y for its processing.

Applying Overrides from Mulitiple Call Levels
When you have more than one override for the same file at several call levels
(nested calls), the order in which the overrides are applied to the file is from the
innermost override (the override with the largest call level) to the outermost over-
ride (the override with the smallest call level). To prevent file overrides at lower
call levels, see “Securing Files” on page 2-11. In the following example, override 2
is the innermost and override 1 is the outermost:

Override 1 OVRPRTF FILE(OUTPUT) COPIES(6) SPOOL(*YES)
CALL PGM(A)

Program A
Override 2 OVRPRTF FILE(OUTPUT) COPIES(2) LPI(6)
CALL PGM(X)

When program X opens the file OUTPUT, the opened file has the following attributes:

COPIES(6) From Override 1
SPOOL(*YES) From Override 1
LPI(6) From Override 2

The attribute of COPIES(2) specified in override 2 is not used because COPIES(6)
specified in override 1 takes precedence. If a third override for OUTPUT is
embedded in program X, override 2 and then override 1 each override it.

A similar situation exists when you change the name of the file used in the program
and you also change some of the attributes of the file. For example:

Override 1 OVRDBF FILE(PAYROLL) MBR(CURRENT)
CALL PROG1

Program PROGH1
Override 2 OVRDBF FILE(INPUT) TOFILE(PAYROLL)
CALL PROG2

When program PROG?2 is ready to open INPUT, it opens PAYROLL instead (because
of override 2). Also, the member used for processing is CURRENT (because of over-
ride 1).

When several overrides that override the file type to be used by a program are
applied, only the attributes specified on the overrides of the same type as the final

Chapter 2. Overrides and File Redirection 2-9

file are applied. In the following example, assume that program MAKEMASTER
attempts to open the diskette file DKA:

Override 1 OVRDKTF FILE(PRTA) TOFILE(DKB) LABEL(DKFIRST)
CALL PGM(A)

Program A
Override 2 OVRPRTF FILE(DKA) TOFILE(PRTA) SPOOL(*YES)
CALL PGM(B)

Program B
Override 3 OVRDKTF FILE(PRTB) TOFILE(DKA) DEV(DKTO1) LABEL(DKLAST)
Override 4 OVRDKTF FILE(DKA) TOFILE(DKC) DEV(DKT02) LABEL(DKTTST)

CALL PGM(C)

Program C
Override 5 OVRPRTF FILE(DKA) TOFILE(PRTB) SCHEDULE (*JOBEND)
CALL PGM(D)
Program D
Override 6 OVRDKTF FILE(DKA) VOL(MASTER)

CALL PGM(MAKEMASTER)

Program MAKEMASTER
(Program MAKEMASTER attempts to open file DKA, but
actually opens the diskette file DKB.)

In the preceding example, the file that program MAKEMASTER actually opens is the
diskette file DKB because of the following reasons:

* Override 6 (applied first) does not cause file DKA to be overridden with any

other file.

* Override 5 (applied second) causes file DKA to be overridden with printer file
PRTB.

* Override 4 is ignored at this level because override 5 changed the file name to
PRTB.

* Override 3 (applied third) causes file PRTB to be overridden with diskette file
DKA.

* Override 2 (applied fourth) causes file DKA to be overridden with printer file
PRTA.

e Override 1 (applied last) causes file PRTA to be overridden with diskette file ‘
DKB.

Therefore, the file that program MAKEMASTER opens is the diskette file DKB.
Because the file to be opened is a diskette file, the attributes overridden are only
those specified on the Override with Diskette File (OVRDKTF) commands:
VOL(MASTER) from override 6; DEV(DKTO01) from override 3; and LABEL(DKFIRST)
from override 1.

The attributes specified on the Override with Printer File (OVRPRTF) commands are
ignored (even though they might have been allowed on the OVRDKTF commands).
Refer to “File Redirection” on page 2-24 for more information on the effect of over-
rides that change the file type.

2-10 Data Management Guide

CL Program Overrides

Securing Files

If a CL program overrides a file and then calls a high-level language program, the
override remains in effect for the high-level language program. However, if a high-
level language program calls a CL program that overrides a file, the override is
deleted automatically when control returns to the high-level language program.

High-level language program:
CALL CLPGM1
CL program:
OVRDKTF FILE(DK1) TOFILE(MSTOUT)

ENDPGM
High-level language program:
OPEN DK1

The file opened is DK1, not MSTOUT. This is because the override in the CL
program is deleted when the CL program ends.

To perform an override from a high-level language program, call the QCMDEXC
program from the high-level language program. The override, via a call to
QCMDEXC, takes the call level of the program that called QCMDEXC.

High-level language program:
CALL QCMDEXC PARM('OVRDKTF FILE(DK1) TOFILE(MSTOUT)' 32)
OPEN DK1

The file opened is MSTOUT because of the override requested by the call to the
QCMDEXC program.

In an actual program, you might want to use data supplied by the program as a
parameter of the override. This can be done by using program variables in the call
to QCMDEXC. For more information on the use of program variables, refer to the
appropriate language manual.

On occasion, you may want to prevent the person or program that calls your
program from changing the file names or attributes you have specified. You can
prevent additional file overrides by coding the SECURE(*YES) parameter on a file
override command for each file needing protection. This protects your file from
overrides at lower call levels.

Chapter 2. Overrides and File Redirection 2-11

The following shows an example of a protected file:

Override 1 OVRPRTF FILE(PRINT1) SPOOL(*NO)

Override 2 OVRDBF FILE(NEWEMP) TOFILE(OLDEMP) MBR(N67)
CALL PGM(CHECK)

Program CHECK
Override 3 OVRDBF FILE(INPUT) TOFILE(NEWEMP) MBR(N77) SECURE(*YES)
CALL PGM(NEMPRPT)

Program NEMPRPT
(NEWEMP and PRINT1 are opened.).

Override 4 OVRDBF FILE(INPUT) TOFILE(NEWEMP) MBR(N77)
CALL PGM(NEMPLST)

Program NEMPLST
(OLDEMP and PRINT1 are opened.)

When program NEMPRPT is called, it attempts to open the files INPUT and PRINT1.
NEMPRPT actually opens files NEWEMP, member N77. Because override 3 speci-
fies SECURE(*YES), override 2 is not applied. When program NEMPLST is called, it
also attempts to open the files INPUT and PRINT1. NEMPLST actually opens files
OLDEMP, member N67. Because override 4 has the same name as override 3 and
is at the same call level as override 3, it replaces override 3. Thus, the file is no
longer protected from overrides at lower call levels, and override 2 is applied for
program NEMPLST.

PRINT1 is affected only by override 1, which is in effect for both programs NEMPRPT
and NEMPLST.

Using a Generic Override for Printer Files

The OVRPRTF command allows you to have one override for all the printer files in
your job with the same set of values. Without the generic override, you would have
to do a separate override for each of the printer files.

Following are specific examples of applying the OVRPRTF command.

Applying OVRPRTF with *PRTF
The OVRPRTF command can be applied to all printer files by specifying *PRTF as
the file name.

The OVRPRTF command with *PRTF is applied if there is no other override for the
printer file name at the same call level. The following example shows how *PRTF
works:

Override 1 OVRPRTF FILE(OUTPUT) COPIES(6) LPI(6)

Override 2 OVRPRTF FILE(*PRTF) COPIES(1) LPI(8)
CALL PGM(X)

When program X opens the file OUTPUT, the opened file has the following attributes:

COPIES(6) From Override 1
LPI(6) From Override 1

2-12 Data Management Guide

When program X opens the file PRTOUT, the opened file has the following attributes:

COPIES(1) From Override 2
LPI(8) From Override 2

Applying OVRPRTF with *PRTF from Multiple Call Levels
When you have more than one override for the printer file at several call levels
(nested calls), the order in which the overrides are applied to the file is from the
: innermost override (the override with the largest call level) to the outermost over-
ride (the override with the smallest call level).

Program A
Override 1 OVRPRTF FILE(*PRTF) COPIES(1)
Override 2 OVRPRTF FILE(PRT2) COPIES(2)
Override 3 OVRPRTF FILE(PRT4) COPIES(2)
CALL PGM(B)

Program B
Override 4 OVRPRTF FILE(*PRTF) LPI(4)
Override 5 OVRPRTF FILE(PRT3) LPI(8)
Override 6 OVRPRTF FILE(PRT4) LPI(8)
CALL PGM(X)

When program X opens the file PRT1, the opened file has the following attributes:
COPIES(1) From Override 1
LPI(4) From Override 4

Because no specific overrides are found for PRT1, *PRTF overrides (1 and 4) are
applied.

When program X opens the file PRT2, the opened file has the following attributes:
COPIES(2) From Override 2

LPI1(4) From Override 4

Because no specific override is found for PRT2 in program B, override 4 is applied.
In program A, override 2 specifies PRT2 and is applied.

When program X opens the file PRT3, the opened file has the following attributes:
COPIES(1) From Override 1

LPI(8) From Override 5

In program B, override 5 specifies PRT3 and is applied. Because no specific over-
ride is found for PRT3 in program A, override 1 is applied.

When program X opens the file PRT4, ihe opened file has the following attributes:

COPIES(2) From Override 3
LPI(8) From Override 6

In. program B, override 6 specifies PRT4 and is applied. In program A, override 3
specifies PRT4 and is applied.

Chapter 2. Overrides and File Redirection 2-13

Applying Overrides when Compiling a Program
Overrides may be applied at the time a program is being compiled for either of two
purposes:

* To select the source file
¢ To provide external data definitions for the compiler to use in defining the
record formats to be used on I/O operations

Overrides to the source file are handled just like any other override. They may
select another file, another member of a database file, another label for diskette or
tape, or change other file attributes.

Overrides may also be applied to files that are used within the program being com-
piled, if they are being used as externally described files in the program. These
files are not opened at compile time, and thus the overrides are not applied in the
normal manner. These overrides are used at compile time only to determine the file
name and library that will be used to define the record formats and fields for the
program to use I/O operations. Any other file attributes specified on the override
are ignored at compile time. It is necessary that these file overrides be active at
compile time only if the file name specified in the source for the program is not the
file name that contains the record formats that the application needs.

The file name that is opened when the compiled program is run is determined by the
file name that the program source refers to, changed by whatever overrides are in
effect at the time the program runs. The file name used at compile time is not kept.
The record formats in the file that is actually opened must be compatible with those
used when the program was compiled. Obviously, the easiest way to assure record
compatibility is to have the same overrides active at run time that were active at
compile time. If your program uses externally described data and a different field
level file is used at run time, it is usually necessary to specify LVLCHK(*NO) on the
override. See “File Redirection” on page 2-24 for details.

In the following example, assume that the source for the program INVENTORY,
taken from member INVN42, contains an open to the printer file LISTOUT:

Override 1 OVRDKTF FILE(RPGSRC) TOFILE(SRCPGMS) MBR(INVN42)
Override 2 OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)
CALL PGM(A)

Program A
Override 3 OVRPRTF FILE(LISTOUT) TOFILE(QUTPUT)
Override 4 OVRDKTF FILE(RPGSRC) WAITFILE(30)
CRTRPGPGM PGM(INVENTORY) SRCFILE(RPGSRC)
RETURN

Override 5 OVRPRTF FILE(LISTOUT) TOFILE(REPORTS) LPI(8)
CALL PGM(INVENTORY)

The program INVENTORY opens the printer file REPORTS in place of printer file
LISTOUT and creates output at 8 lines per inch.

The program INVENTORY is created (compiled) from the member INVN42 in the
database file SRCPGMS. Override 4 (applied first) overrides an optional file attri-
bute. Override 1 (applied last) causes the file RPGSRC to be overridden with the
database file SRCPGMS, member INVN42.

2-14 Data Management Guide

The program INVENTORY is created with the printer formats from the file REPORTS.
Override 3 (applied first) causes the file LISTOUT to be overridden with OUTPUT.
Override 2 (applied last) overrides OUTPUT with REPORTS. Other attributes may be
specified here, but it is not necessary because only the record formats are used at

compile time.

At run time, override 3 is no longer active, because program A has ended. There-
fore override 2 has no effect on LISTOUT. However, override 5, which is active at
run time, replaces LISTOUT with REPORTS and specifies 8 lines per inch. Because
the same file is used for both compilation and run-time, level checking may be left

on.

Effect of Overrides on Some System Commands
The following commonly used commands ignore overrides entirely:

ADDLFM DSPJRN
ADDPFM EDTOBJAUT
ALCOBJ EDTDLOAUT
APYJRNCHG ENDJRNPF
CHGOBJOWN GRTOBJAUT
CHGPTR INZPFM
CHGSBSD MOVOBJ
CHGXXXF (all change file commands) RGZPFM
CLRPFM RMVJRNCHG
CLRSAVF RMVM
CPYIGCTBL RNMOBJ
CRTDKTF RSTUSRPRF
CRTDUPOBJ RVKOBJAUT
CRTAUTHLR SAVCHGOBJ
CRTSBSD SAVLIB
CRTTAPF SAVOBJ
DLCOBJ SAVPGMPRD
DLTF SAVSAVFDTA
DLTAUTHLR SAVSYS
DSPDBR SBMDBJOB
DSPFD SIGNOFF
DSPFFD STRDBRDR
STRJRNPF

Overrides are not applied to any system files that are opened as part of an end-of-
routing step or end-of-job processing. For example, overrides cannot be specified
for the job log file. In some cases, when you need to override something in a
system file, you may be able to change it through a command other than an override
command. For example, to change the output queue for a job log, the output queue
could be changed before sign-off using the OUTQ parameter on the Change Job
(CHGJOB) command to specify the name of the output queue for the job. If the
printer file for the job log contains the value *JOB for the output queue, the output
queue is the one specified for the job.

Chapter 2. Overrides and File Redirection 2-15

The following commands allow overrides for the SRCFILE and SRCMBR parameters

only:

CRTCMD CRTPF
CRTICFF CRTPRTF
CRTDSPF CRTSRCPF
CRTLF CRTTBL

CRTXXXPGM

(All create program commands. These commands also
use overrides to determine which file will be opened by
a compiled program. See “Applying Overrides when
Compiling a Program” on page 2-14 for more informa-
tion.)

The following command allows overrides for the TOFILE, MBR, SEQONLY, LVLCHK,
and INHWRT parameters:

OPNQRYF

The following commands allow overrides, but do not allow changing the MBR to
*ALL:

CPYFRMPCD CPYTOPCD

The following commands do not allow overrides to be applied to the display files
they use. Overrides to the printer files they use should not change the file type or
the file name. Various restrictions are placed on changes that may be made to
printer files used by these commands, but the system can not guarantee that all
combinations of possible specifications will produce an acceptable report.

DMPOBJ and (In addition to the preceding limitations, these commands
DMPSYSOBJ do not allow overrides to the file they dump.)

DSPXXXXXX (All display commands. The display commands
that display information about a file do not

allow overrides to that file.)

DSPIGCDCT
EDTIGCDCT

GO (Message file can be overridden.)
PRTXXXXXX (All print commands.)

QRYDTA

TRCXXX (All trace commands.)

WRKXXXXXX (All work-with commands.)

2-16 Data Management Guide

Deleting Overrides

When a program returns from a call level containing overrides, the overrides are
deleted. When control is transferred to another program (TFRCTL command) so that
the program is running at the same call level, the overrides are not deleted. If you
want to delete an override before the program has completed running, you can use
the Delete Override (DLTOVR) command. This command deletes overrides only in
the call level in which the command is entered. To identify an override, use the file
name specified on the FILE parameter of the override command. You can delete all
overrides at this call level by specifying value *ALL for the FILE parameter. For

example:

Override 1 OVRDBF FILE(DBA) TOFILE(DBB)
Override 2 OVRPRTF FILE(PRTC) COPIES(2)
Override 3 OVRDKTF FILE(DKT) EXCHTYPE(*BASIC)
Delete Override 1 DLTOVR FILE(DBA)

Delete Override 2 DLTOVR FILE(*ALL)

Delete override 1 causes override 1 to be deleted. Delete override 2 causes the
remaining overrides (overrides 2 and 3) to be deleted.

In the following example, assume that commands 1, 2, and 11 are entered interac-
tively, at call level 1:

Command 1 OVRDBF FILE(DBA) TOFILE(DBB) SECURE(*YES)
Command 2 CALL PGM(A)
Program A
Command 3 OVRPRTF FILE(DBB) TOFILE(PRTC) LPI(6)
Command 4 TFRCTL PGM(B)
Program B
Command 5 OVRDKTF FILE(DKTE) TOFILE(DKTF)
Command 6 CALL PGM(QCMDEXC) +
PARM('OVRDSPF FILE(DSPG) TOFILE(DSPH)' 31)
Command 7 DLTOVR FILE(DBA DBB)
Command 8 MONMSG MSGID(CPF9841)
Command 9 CALL PGM(QCMDEXC) +
PARM('DLTOVR FILE(*ALL)' 17)
Command 10 RETURN
Command 11 DLTOVR FILE(*ALL)

Command 1 causes an override at level 1 from file DBA to file DBB.
Command 2 calls program A and creates a new call level, level 2.

Command 3 causes an override at level 2 from file DBB to file PRTC. Also, the LPI
attribute of file PRTC is overridden to 6.

Command 4 transfers control from program A to program B at the same call level,
level 2.

Command 5 causes an override at level 2 from file DKTE to file DKTF.

Chapter 2. Overrides and File Redirection 2-17

Command 6 causes an override at level 2 from file DSPG to file DSPH. A call to
QCMDEXC does not cause a new call level.

Command 7 deletes any overrides of files DBA and DBB at level 2. The override
specified by command 3 is deleted, but the override specified by command 1 is not
deleted. Because an override for DBA cannot be found at level 2, the override-not-
found escape message (CPF9841) is sent.

Command 8 monitors for a message to prevent a function check, but specifies no
action to be taken if the message is sent.

Command 9 deletes all remaining overrides at level 2. Overrides specified by com-
mands 5 and 6 are deleted, but the override specified by command 1 is not deleted.

Command 10 causes a return to level 1, and level 2 is deleted. If any overrides
were specified at level 2 between command 9 and command 10, they are deleted at
this point.

Command 11 causes all remaining overrides specified at level 1 to be deleted. The
override specified by command 1 is deleted.

Displaying Overrides
You can use the Display Override (DSPOVR) command to display file overrides at
multiple call levels for a job. You can display all file overrides, or file overrides for
a specific file.

The file overrides may be merged before being displayed. A merged override is the
result of combining overrides from level 1 to the current level or any specified call
level, producing a composite override which will be applied when the file is used at
the specific call level. The current call level is the call level of the program that is
currently running. This program is the last program name displayed on the program
stack. This command may be requested from either a batch or interactive environ-
ment. You can also access this function from option 15 (Display file overrides) from
the Work with Job menu (using the WRKJOB command) or by selecting option 15
(Display file overrides) from the Display Job menu (using the DSPJOB command).

1. To dispiay the merged file override for a particular file at a specific call level,
you type:
DSPOVR FILE(REPORTS) MRGOVR(*YES) LVL(3)

This command produces a display showing the merged override for the file
REPORTS at call level 3 with text descriptions of each keyword and parameter.
Any applicable overrides at call levels 1, 2, and 3 are used to form the merged
override, but overrides at higher call levels are ignored. If the call level speci-
fied is not active, all applicable overrides up to the current level are ysed.

2. To display all file overrides for a specific file up to a specific call level, you type:
DSPOVR FILE(REPORTS) MRGOVR(*NO) LVL(2)

This command produces a display showing the file name, the call level for
which the override was requested, the type of override, and the override param-
eters in keyword-parameter form. If no file overrides are found for the file up to
and including the specified call level, escape message CPF9842 is sent. If you
are using DSPOVR in a CL program, you might want to add a MONMSG
command following the DSPOVR command to prevent your program from
ending if there are no overrides for the file. This technique is illustrated in

2-18 Data Management Guide

some of the examples later in this chapter. For more information on the
MONMSG command, refer to the CL Programmer’s Guide.

To display the merged file overrides for all files at the current call level, you
type:
DSPOVR FILE(*ALL) MRGOVR(*YES) LVL(*)

This command produces a display showing the file name, the type of override,
and the merged overrides in keyword-parameter form, where only the keywords
and parameters entered on the commands are displayed. This is the same as
what happens when you type DSPOVR with no parameters. Only those
keywords for which parameters were specified are displayed. The associated
text descriptions are not displayed. Overrides at call levels greater than 999 are
not displayed.

When overrides are displayed not by the DSPOVR command, but through an
option on one of the system interfaces to work with jobs (for example,
WRKJOB), all file overrides from level 1 to the current call level are displayed.
This would be the same as typing the following command:

DSPOVR FILE(*ALL) MRGOVR(*NO) LVL(*)

This produces a display showing the file name, the call level for which the over-
ride was requested, the type of override, and the override parameters in
keyword-parameter form for each override.

Because the display overrides function uses a copy of the internal control
blocks, overrides that were deleted between the time the display overrides func-
tion was called and the time the output was produced may not be reflected in
the output. This can occur only when the overrides in another job are being dis-
played.

Note that when specifying a call level, as in the first two examples in this section,
the call level on which you first entered commands may not be level 1. Depending
on the contents of the first program and first menu specified in your user profile, and
any other programs or menus you may have come through, it is not unusual to be
entering commands at level 3 or 4. You may enter WRKJOB and select option 11
(program stack) to see what programs are running above your current level.

Unless you know exactly what you want to see, it is usually best to request the over-
ride display with no parameters, because options on the basic override display
allow you to select a detailed display of any override you are interested in. The
specific options available are:

From the merged display of all overrides, you can request the display that is not
merged, as in step 4.

From the display (not merged) of all overrides, you can request the merged
display. '

From the merged display of all overrides, you can request a merged detail
display of any override, equivalent to step 1 on page 2-18.

From the merged display of all overrides, you can request a display of all the
individual overrides that contributed to the merged display, showing the call
level at which each was requested.

From either the display of contributing overrides or the display (not merged) of
all overrides, you can request a detail display of the override for a particular file
at a single call level.

Chapter 2. Overrides and File Redirection 2-19

The following example is intended only to illustrate what the various forms of the
display override command can do. The DSPOVR command is typically entered
interactively or added temporarily to a CL program, or to any high-level language
program via QCMDEXC, to verify that the proper overrides are in effect at the time a
program is called or a file is opened. Assume that commands 1, 2, 3, and 17 are
entered at call level 1:

Command 1 OVRPRTF FILE(PRTA) COPIES(3)
Command 2 OVRDBF FILE(DBC) WAITFILE(*IMMED)
Command 3 CALL PGM(A)

Program A
Command 4 OVRPRTF FILE(PRTB) TOFILE(PRTA) COPIES(6)
Command 5 OVRDBF FILE(DBC) WAITFILE(60)
Command 6 DSPOVR FILE(PRTB) MRGOVR(*YES)
Command 7 CALL PGM(B)

Program B
Command 8 CALL PGM(QCMDEXC) +
PARM('OVRDSPF FILE(DSPE) TOFILE(DSPF)' 31)

Command 9 OVRDBF FILE(DBC) TOFILE(DBD)
Command 10 DSPOVR FILE(DBC) MRGOVR(*NO) LVL(3)
Command 11 DSPOVR FILE(DBD) MRGOVR(*NO) LVL(2)
Command 12 MONMSG MSGID(CPF9842)
Command 13 CALL PGM(QCMDEXC) +

PARM('DSPOVR FILE(*ALL) MRGOVR(*YES) +
LVL(*) OUTPUT(*)' 47)

Command 14 RETURN

Command 15 DSPOVR FILE(*ALL) MRGOVR(*NO)

Command 16 RETURN

Command 17 DSPOVR FILE(*ALL) MRGOVR(*NO) LVL(2) OUTPUT(*)

Command 1 causes an override at level 1 of the COPIES attribute of file PRTA to 3
copies.

Command 2 causes an override at level 1 of the WAITFILE attribute of file DBC to
*IMMED.

Command 3 calls program A and creates a new call level, 2.

Command 4 causes an override at level 2 from file PRTB to file PRTA. Also, the
COPIES attribute is overridden to 6.

Command 5 causes an override at level 2 of the WAITFILE attribute of file DBC to 60.
Command 6 displays a merged override for file PRTB at level 2 with text
descriptions of each keyword and parameter, as shown in the following display.

The to-file is PRTA because of command 4, and the COPIES attribute is 3 because of
command 1.

2-20 Data Management Guide

-

Display Override with Printer File

File: PRIB
Call Tevel *
Merged *YES

Keyword Value
Name of file being overridden . . : FILE PRTB
Overriding to printer file . . . : TOFILE PRTA
Library . .« . o o 00 00w . : *LIBL
Number of copies : COPIES 3

Press Enter to continue.

F3=Exit Fl2=Cancel

Command 7 calls program B and creates a new call level, 3.

Command 8 causes an override at level 3 from file DSPE to file DSPF. An override
done via a call to the QCMDEXC program takes the call level of the program that
called the QCMDEXC program.

Command 9 causes an override of file DBC to file DBD.

Command 10 displays all overrides for file DBC from level 1 to level 3, as shown in

the following display. The overrides specified by commands 9, 5 and 2 are dis-
played in keyword-parameter form. Observe that this form of the DSPOVR

command shows all the overrides for the selected file, regardless of redirection.

The three overrides that are shown would not be merged because of the name

change at level 3.

-~
Display All File Overrides
Call Tevel : 3
Type options, press Enter.
5=Display override details
Opt File Level Type Keyword Specifications
DBC 3 DB TOFILE(*LIBL/DBD)
_ 2 DB WAITFILE(60)
_ 1 DB WAITFILE(*IMMED)
F3=Exit F5=Refresh F12=Cancel
.

Chapter 2. Overrides and File Redirection

2-21

Command 11 attempts to display all file overrides for file DBD from level 1 to level
2. Because no overrides for file DBD exist at levels 1 or 2, no overrides are dis-
played, and the override-not-found escape message (CPF9842) is sent.

Command 12 monitors for message CPF9842 on the preceding command. The
monitor specifies no action to be taken, but will prevent a function check if the
message is sent.

Command 13 displays the merged overrides at levels 1 to 3 for all files in keyword-
parameter form, as shown in the next display. File DBC is overridden to file DBD
because of command 9 (commands 5 and 2 are therefore not effective), file DSPE is
overridden to file DSPF because of command 8, and file PRTB is overridden to file
PRTA and COPIES(3) because of commands 4 and 1.

~
(' Display A1l Merged File Overrides
Call Tevel: *

Type options, press Enter.
5=Display override details 8=Display contributing file overrides

Opt File Type Keyword Specifications

_ DSPE DSP TOFILE(*LIBL/DSPF)

8 PRTB PRT TOFILE(*LIBL/PRTA) COPIES(3)
DBC DB TOFILE(*LIBL/DBD)
PRTA PRT COPIES(3)

F3=Exit F5=Refresh F11=A11 file overrides F12=Cancel

- J

If you enter a 5 on the line for PRTB, you get a detail display like the one shown by
command 6. If you enter an 8 on this same line, you get a display showing com-
mands 4 and 1 on separate lines, as shown in the following display. These are the
overrides that were merged to form the PRTB override.

2-22 Data Management Guide

Display Contributing File Overrides

File . . . v v v v v v v v v ot : PRTB
Call level *

Type options, press Enter.
5=Display override details

Opt Level Type Keyword Specifications
2 PRT TOFILE(*LIBL/PRTA) COPIES(6)
1 PRT COPIES(3)

F3=Exit F5=Refresh F12=Cancel F14=Display previous override
N\ J

Command 14 causes a return to level 2, and level 3 is deleted. The overrides issued
at level 3 are implicitly deleted.

Command 15 displays all overrides issued from level 1 to the current call level
(level 2), as shown in the next display. The overrides specified in commands 1, 2, 4,
and 5 are displayed in keyword-parameter form. The override issued in command 9
is not displayed because call level 3 is no longer active. Pressing F11 on this
display allows you to see a display similar to the one shown by command 13.

4 h

Display A1l File Overrides

Call level o : *

Type options, press Enter.
5=Display override details

Opt File Level Type Keyword Specifications
PRTB 2 PRT TOFILE(*LIBL/PRTA) COPIES(6)

DBC 2 DB WAITFILE(60)
1 DB WAITFILE(*IMMED)
PRTA 1 PRT COPIES(3)

F3=Exit F5=Refresh F11=A11 merged file overrides F12=Cancel
- J

Command 16 causes a return to level 1, and level 2 is deleted. The overrides issued
at level 2 are implicitly deleted.

Command 17 displays all overrides issued from level 1 to level 2 in keyword-

parameter form. Because level 2 is no longer active, only the overrides specified at
level 1in commands 1 and 2 are displayed.

Chapter 2. Overrides and File Redirection 2-23

File Redirection

File redirection refers to using overrides to change the file name and library or the
type of the file to be processed. For example, you can substitute one database file
for another or change from using an ICF file to using a display file. This section
applies to using an application program only. System code may or may not support
file redirection. Refer to “Effect of Overrides on Some System Commands” on
page 2-15 for rules on how system code processes overrides.

You use the OVRDBF command to redirect a file to a Distributed Data Management
(DDM) file. If the remote system is another AS/400 system, all normal rules dis-
cussed in this chapter apply. If the remote system is not an AS/400 system or
System/38, then normally you should not specify an expiration date or end-of-file
delay. For more information, refer to the DDM User’s Guide.

When you replace the file that is used in a program with another file of the same
type, the new file is processed in the same manner as the original file. If a field
level file, or any other file containing externally described data is redirected, it
usually is necessary to either specify LVLCHK(*NO) or recompile the program. With
level checking turned off, it is still necessary that the record formats in the file be
compatible with the records in the program. If the formats are not compatible, the
results cannot be predicted.

Overrides that have a TOFILE parameter value other than *FILE remove any data-
base member specifications that may be on overrides applied at higher call levels.
The member name will default to *FIRST unless it is specified with the change to the
file name or library or on another override at a lower call level.

If you change to a different type of file, the device-dependent characteristics are
ignored and records are read or written sequentially. Some device parameters
must be specified in the new device file or the override. Defaults are taken for
others. The effect of specific redirection combinations is described later in this
section.

Any attributes specified on overrides of a different file type than the final file type
are ignored. The parameters SPOOL, SHARE, and SECURE are exceptions to this
rule. They will be accepted from any override applied to the file, regardless of
device type.

Some redirection combinations present special problems due to the specific charac-
teristics of the device. In particular:

¢ File redirection is not recommended for save files.

¢ Nonsequentially processed database files can be redirected only to another
database file or a DDM file.

¢ Display files and ICF files that use multiple devices (MAXDEV or
MAXPGMDEV > 1) can be redirected only to a display file or ICF file.

¢ Redirecting a display file to any other file type, or another file type to a display
file, requires that the program be recompiled with the override active if there
are any input-only or output-only fields. This is necessary because the display
file omits these fields from the record buffer in which they are not used, but
other file types do not.

2-24 Data Management Guide

Table 2-1 summarizes valid file redirections:

Table 2-1. File Redirections
From-File
To-File Printer ICF Diskette Display Database Tape
Printer o* (o] (o} (o} (o} (0]
ICF 110 110
(o] o o} o o (o]
| | I 1 I
Diskette (o] o o (o} (0] o
1 1 | 1 1
Display 110 1/0
(o] o o o (o} (o]
! 1 | I 1
Database (o] (0] (o} (0} (0] (o}
| | 1 1 |
Tape (o] (o] (o] (o] (o} (0]
1 | | | 1
I=input file O=output file 1/0=input/output file
*=redirection to a different type of printer

To use this chart, identify the file type to be overridden in the FROM-FILE columns
and the file type overriding in the TO-FILE column. The intersection specifies an | or
O or both, meaning that the substitution is valid for these two file types when used

as input files or as output files.

CAar ina
Ul 1o

e

(2]

ubstitutions

only. That is, you cannot change the program function by overriding an input file

with an output file.

Chapter 2. Overrides and File Redirection

2-25

The following charts describe the specific defaults taken and what is ignored for
each redirection combination:

From

Printer

To

ICF: Records are written to the file one at a time. Printer
control information is ignored.

Display: Records are written to the display with each
record overlaying the previous record. For program-
described files, you can request each record using the
Enter key. Printer control information is ignored.

Database: Records are written to the database in sequen-
tial order. Printer control information is ignored.

Diskette: The amount of data written on diskette is
dependent on the exchange type of the diskette. Diskette
label information must be provided in the diskette file or
on an override command. Printer control information is
ignored. Refer to Chapter 8, “Diskette Support” for a
description of exchange types.

Tape: Records are written to the tape in sequential order.
Tape label information must be specified in the tape file
or on an override command. Printer control information
is ignored.

From

ICF input

To

Display: Records are retrieved from the display one at a
time. Type in the data for each record and press the
Enter key when the record is complete.

Database: Records are retrieved from the database.

Diskette: Records are retrieved in sequential order.
Diskette label information must be provided in the
diskette file or on an override command. Refer to
Chapter 8, “Diskette Support” for a description of
exchange types.

Tape: Records are retrieved in sequential order. Tape
label information must be specified in the tape file or on
the override command.

2-26 Data Management Guide

From

ICF output

To

Printer: Records are printed and folding or truncating is
performed as specified in the printer file.

Display: Records are written to the display with each
record overlaying the previous record.

Database: Records are written to the database in sequen-
tial order.

Diskette: The amount of data written on diskette is
dependent on the exchange type of the diskette. Diskette
label information must be provided in the diskette file or
on an override command. Refer to Chapter 8, “Diskette
Support” for a description of exchange types.

Tape: Records are written to the tape in sequential order.
Tape label information must be specified in the tape file
or on the override command.

From

ICF input/output

To

Display: Input records are retrieved from the display one
at a time. Type in the data for each record and press the
Enter key when the record is complete. Output records
are written to the display with each record overlaying the
previous input or output record. Input and output records
are essentially independent of each other and may be
combined in any manner.

From

Diskette input

To
ICF: Records are retrieved from the ICF file one at a time.

Display: Records are retrieved from the display one at a
time. Type in the data for each record and press the
Enter key when the record is complete. A non-field-level
device file must be specified. Diskette label information
is ignored.

Database: Records are retrieved in sequential order.
Diskette label information is ignored.

Tape: Records are retrieved in sequential order. If a
label value is specified in the program, that value is used
as the label for the tape file.

Chapter 2. Overrides and File Redirection 2-27

From

Diskette output

To
ICF: Records are written to the ICF file one at a time.

Database: Records are written to the database in sequen-
tial order.

Display: Records are written to the display with each
record overlaying the previous record. You can request
each output record using the Enter key.

Printer: Records are printed and folding or truncating is
performed as specified in the printer file.

Tape: Records are written on tape in sequential order.

From

Display input

To
ICF: Records are retrieved from the ICF file one at a time.

Diskette: Records are retrieved in sequential order.
Diskette label information must be provided in the
diskette file or on an override command. Refer to
Chapter 8, “Diskette Support” for a description of
exchange types.

Database: Input records are retrieved.

Tape: Records are retrieved in sequential order. Tape
label information must be specified in the tape file or on
an override command.

From

Display output

To
ICF: Records are written to the ICF file one at a time.

Database: Records are written to the database in sequen-
tial order.

Diskette: The amount of data written on diskette is
dependent on the exchange type of the diskette. Diskette
label information must be provided in the diskette file or
on an override command. Refer to Chapter 8, “Diskette
Support” for a description of exchange types.

Tape: Records are written on tape in sequential order.
Tape label information must be specified in the tape file
or on an override command.

Printer: Records are printed and folding or truncating is
performed as specified in the printer file.

2-28 Data Management Guide

From To

Display input/output ICF: Input records are retrieved from the ICF file one at a
time. Output records are written to the ICF file one at a
time. The reiationship between the input and output
records is determined by the application program.

From To

Database input (sequentially processed)
ICF: Records are retrieved from the ICF file one at a time.

Display: Records are retrieved from the display one at a
time. Type in the data for each record and-press the
Enter key when the record is complete. A non-field-level
device file must be specified.

Diskette: Records are retrieved in sequential order.
Diskette label information must be provided in the
diskette file or on an override command. Refer to
Chapter 8, “Diskette Support” for a description of
exchange types.

Tape: Records are retrieved from tape in sequential
order. Tape label information must be specified in the
tape file or on an override command.

From To

Database output (sequentially processed)
Printer: The number of characters printed is determined
by the page size specified. If folding is specified, all of a
record is printed.

ICF: Records are written to the ICF file one at a time.

Display: Records are written to the display with each
record overlaying the previous record. You can request
each output record using the Enter key.

Diskette: The amount of data written on diskette depends
on the exchange type of the diskette. Diskette label infor-
mation must be provided in the diskette file or on an over-
ride command. Refer to Chapter 8, “Diskette Support”
for a description of exchange types.

Tape: Records are written on tape in sequential order.
Tape label information must be specified in the tape file
or on an override command.

Chapter 2. Overrides and File Redirection 2-29

From

Tape input

To
ICF: Records are retrieved from the ICF file one at a time.

Display: Records are retrieved from the display one at a
time. Type in the data for each record and press the
Enter key when the record is complete. A non-field-level
device file must be specified. Tape label information is
ignored.

Database: Records are retrieved in sequential order.
One record is read as a single field. Tape label informa-
tion is ignored.

Diskette: Records are retrieved in sequential order. If a
label value is specified in the program, that value is used
as the label for the diskette file.

From

Tape output

To

Printer: Records are printed, and folding or truncating is
performed as specified in the printer file.

ICF: Records are written to the ICF file one at a time.
Tape label information is ignored.

Diskette: The amount of data written on diskette depends
on the exchange type of the diskette. If a label value is
specified in the program, that value is used as the label
for the diskette file. Refer to Chapter 8, “Diskette
Support” for a description of exchange types.

Display: Records are written to the display with each
record overlaying the previous record. You can request
each output record using the Enter key.

Database: Records are written to the database in sequen-
tial order.

2-30 Data Management Guide

Overriding Program Device Entries

In addition to the file attributes and record formats similar to those in other device
files, an ICF file also contains program device entries which provide the link
between the application and each of the remote systems or devices with which your
program communicates.

The following lists the CL commands that provide override functions for device
entries:

DLTOVRDEVE Delete Override Device Entry: Deletes one or more program device
overrides that were previously specified in a call level.

OVRICFDEVE Override Intersystem Communications Function Device Entry: Used
to temporarily add the program device entry and the remote
location name to the ICF file or to override a program device entry
with the specified remote location name and attributes for an ICF
file.

A program device entry has two functions:

* |t associates a program device name with a remote location.
* |t establishes a set of program communications-type dependent attributes.

Multiple program device entries can be defined. Each program device entry must
have a unique program device name. The maximum number of entries is deter-
mined by the MAXPGMDEV parameter specified at file creation.

Program device entries may be defined by the Add intersystem Communications
Function Device Entry (ADDICFDEVE) command or the OVRICFDEVE command. The
add command makes a permanent addition to the file, and the override command
makes a temporary change to the program device information. It is not necessary to
add a program device entry before overriding it. Several add commands may be
used to add multiple program devices to the same file. Several override commands
may be used to change different device entries. Refer to the Communications
Programmer’s Guide for more information on program device entries and for a list
of the parameters supported by each communications type.

Overriding Remote Location Name

The device entry override may be used to temporarily define or change the remote
location name associated with the program device entry.

The following example demonstrates the use of the OVRICFDEVE command to over-
ride the remote location name:

OVRICFDEVE PGMDEV(PGMDEVA) RMTLOCNAME (CHICAGO)
CALL RPGPGM

In this example, when RPGPGM specifies PGMDEVA, remote location CHICAGO is

used. Refer to the Communications Programmer’s Guide for more information on
remote location name and its relationship to configuration.

Chapter 2. Overrides and File Redirection 2-31

Overriding Session Attributes
The device entry override may also be used to temporarily change the character-
istics of the communications session that is established when the program device is
acquired.

Although some of the session attributes have system-level defaults, the default for
the majority of these attributes is information supplied during communications con-
figurations.

Session attributes are identified as parameters on the ADDICFDEVE or
OVRICFDEVE command. Parameters not specified on either command take on the
appropriate system default or specified configuration value. If the same parameter
is specified on both the ADDICFDEVE and OVRICFDEVE commands, the value speci-
fied on OVRICFDEVE overrides the value declared on the ADDICFDEVE command.

The following example demonstrates the use of the OVRICFDEVE command to over-
ride the format selection processing attribute:

OVRICFDEVE PGMDEV(PGMDEVA) FMTSLT(*PGM)

In this example, format selection is changed to *PGM. This overrides what was pre-
viously defined in the program device entry. Refer to the appropriate communica-
tions programming manual for more information on the use of the session attributes.
Refer to the CL Reference for more information on the format and aliowable values
of the parameters on the OVRICFDEVE command.

Overriding Remote Location Name and Session Attributes
This form of the override device entry is a combination of the previous two forms.
With this form of override, you can override the remote location that is used by a
program, and you can also override the session attributes.

Applying OVRICFDEVE Command

Device entry overrides follow most of the same rules as file overrides. They are
effective from the time they are specified until they are replaced or deleted or until
the program in which they were specified ends. Any program device entry over-
rides that are in effect at the time the device is acquired are applied.

The OVRICFDEVE command can be used to initialize an environment or change the
environment while running.

In the following example, the OVRICFDEVE commands are initializing an environ-

ment:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (BOSTON) . . .

Override 2 OVRICFDEVE PGMDEV(PGMDEV2) +
RMTLOCNAME (ROCHMN) . . .

CALL PGM(A)
CALL PGM(B)

CALL PGM(X)

2-32 Data Management Guide

When the program uses any ICF file and acquires the program device named
PGMDEV1, then the remote location named BOSTON and attributes from override 1
are used when establishing the communication session.

When the program uses an ICF file and acquires the program device named
PGMDEV2, then the remote location named ROCHMN and attributes from override 2
are used when establishing the communication session.

In the following example, the OVRICFDEVE commands are used to change the
running environment:

Override 1 OVRICFDEVE PGMDEVE(PGMDEV1) +
RMTLOCNAME (BOSTON) . . .
CALL PGM(A)
Override 2 OVRICFDEVE PGMDEVE(PGMDEV2) +
RMTLOCNAME (ROCHMN) . . .
CALL PGM(A)

The first time program A is called, an ICF file is opened and the program device
named PGMDEV1 acquired. The remote location named BOSTON and attributes
from override 1 are used when establishing the communication session.

The second time program A is called, an ICF file is opened and the program device
named PGMDEV2 is acquired. The remote location named ROCHMN and attributes
from override 2 are used when establishing the communication session.

Applying OVRICFDEVE from Multiple Call Levels
When vou have more than one override for the same program device at several call
levels (nested calls), the order in which the overrides are applied to the program
device is from the innermost override (the override with the largest call level) to the
outermost override (the override with the smallest call level).

To prevent override at lower call levels from being applied, see “Applying
OVRICFDEVE with SECURE” on page 2-34.

In the following example, override 2 is the innermost, and override 1 is the outer-
most:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
FMTSLT (*PGM) BATCH(*NO)
CALL PGM(A)

Program A
Override 2 OVRICFDEVE PGMDEV(PGMDEV1) +
FMTSLT(*RECID) APPID(PAYROLL)
CALL PGM(X)

When program X acquires program device PGMDEV1, the following attributes are

used:
FMTSLT(*PGM) From Override 1
BATCH(*NO) From Override 1

APPID(PAYROLL) From Override 2

The attribute of FMTSLT(RECID) specified in override 2 is not used because it was
overridden by FMTSLT(*PGM) specified in override 1. Override 1 overrides override

Chapter 2. Overrides and File Redirection 2-33

2. If there is a third override for program device PGMDEV1 embedded in program X,
it is overridden by override 2 and then override 1.

A similar situation exists when you change the remote location to be used with the
program device and you also change some of the attributes of the program device.
For example:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (NYCAPPC)
CALL PGM(A)

Program A
Override 2 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (MPLSAPPC) CNVTYPE(*USER)
CALL PGM(X)

When program X is ready to acquire PGMDEV1, it acquires remote location
NYCAPPC instead of MPLSAPPC (because override 1 overrides override 2 remote
location). Also, the conversation type is *USER (because of override 2).

Applying OVRICFDEVE with SECURE
On occasion, you may want to protect program devices used by a program from
overrides at lower call levels.

You can prevent additional program device overrides by coding the SECURE(*YES)
parameter on a program device override command for each program device
needing protection. This protects you from overrides at lower call levels.

The following shows an example of a protected program device:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (BOSTON)
Override 2 OVRICFDEVE PGMDEV(PGMDEV4) +
RMTLOCNAME (ROCHMN)
CALL PGM(A)

Program A
Override 3 OVRICFDEVE PGMDEV(PGMDEV5) +
RMTLOCNAME (NYC)
CALL PGM(B)

Program B
Override 4 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (MPLS) SECURE(*YES)
CALL PGM(X)

When program X acquires program device PGMDEV1 for an ICF file, thé remote

location MPLS and attributes from override 4 are used. Because override 4 speci-
fies SECURE("YES), override 1 is not applied.

2-34 Data Management Guide

Deleting Device Entry Overrides

When a program returns from a call level containing program device entry over-
rides, the overrides are deleted, just as any file overrides are deleted. When control
is transferred to another program (TFRCTL command) so that the program is
running at the same call level, the overrides are not deleted. If you want to delete
an override before the run is completed, you can use the Delete Override Device
Entry (DLTOVRDEVE) command. This command only deletes overrides in the call
level in which the command is entered. A DLTOVRDEVE command does not delete
the effects of an ADDICFDEVE command. To remove an ADDICFDEVE command,
you must use the Remove Intersystem Communications Function Device Entry
(RMVICFDEVE) command. To identify an override, use the program device name
specified on the PGMDEV parameter of the override. You can delete all overrides at
this call level by specifying value *ALL for the PGMDEV parameter. For example:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (BOSTON)

Override 2 OVRICFDEVE PGMDEV(PGMDEV4) +
RMTLOCNAME (ROCHMN)

Override 3 OVRICFDEVE PGMDEV(PGMDEV5) +
RMTLOCNAME (NYC)

Delete Override 1 DLTOVRDEVE PGMDEV(PGMDEV1)
Delete Override 2 DLTOVRDEVE PGMDEV (*ALL)

Delete override 1 causes override 1 to be deleted. Delete override 2 causes the
remaining overrides (overrides 2 and 3) to be deleted.

Displaying Device Entry Overrides

Device entry overrides are not displayed by the Display Override (DSPOVR)
command. There is no corresponding command to display device entry overrides.

Chapter 2. Overrides and File Redirection 2-35

2-36 Data Management Guide

Chapter 3. Copying Files

You can use the copy function to move data between device files, database files, or
device and database files. Unlike traditional copy utilities, the AS/400 copy function
is field-level sensitive. Therefore, if you use the copy function, you can rearrange,
enlarge, or drop any of the fields. The system also provides a way to define data-
base files. Specific copy commands simplify dealing with tape and diskette devices
and database source files.

You can copy records to and from files using the following commands:

CPYF Copy File: Copies all or part of a file from the database or external

device to the database or external device.

CPYFRMDKT Copy From Diskette: Copies from a diskette file to a database or

device file.

CPYTODKT Copy To Diskette: Copies a database or device file to a diskette file.

CPYFRMTAP Copy From Tape: Copies from a tape file to a database or device file.

CPYTOTAP Copy To Tape: Copies a database or device file to a tape file.

CPYSRCF Copy Source File: Copies a database source file to a physical source

file.

If you use the Copy File (CPYF) command, you can copy the whole file or a subset of
the file by specifying certain selection values on the command parameters. You can
use these commands to copy daia and source:

Between database files. Records can be copied from a physical or logical file,
but can only be copied to a physical file.

From an external device (such as diskette or tape) to the database, and from the
database to an external device.

From an external device to another external device.

From a spooled inline file to the database or to an external device. (Inline data
files are processed by a program as a program-described file. The records in
the file are processed sequentially from the beginning of the file to the end of
the file. Inline data files can be either unnamed or named.)

From a local database file to a file on a remote system.

From a file on a remote system to a local database file.

The combinations. of device and database files for which copy operations can be
performed are shown in Table 3-1 on page 3-2. An X indicates that the corre-
sponding file types are a valid combination for copying a file.

© Copyright IBM Corp. 1988, 1989

Chapter 3. Copying Files 3-1

Table 3-1. Copy Operations

To To To To To

Physical Printer Diskette Tape *PRINT To
From-File File File File File File? DDM
Physical X2 X X X X X
Logical X2 X X X X X
Diskette X X X3 X X X
Tape X X X X X X
Spooled Inline* X X X X X X
DDM?® X X X X X

If TOFILE(*PRINT) is specified, the from-file records are copied to the IBM-supplied
printer device file QSYSPRT and formatted according to the OUTFMT parameter.

If the to-file does not exist before the copy operation and the from-file is a physical or
logical file, the copy operation will create a physical file as the to-file if you specified
CRTFILE(*YES) on the CYPF command.

If the from-file and the to-file are both diskette files, the to-file must be a spooled file.

A spooled inline file (which is handled like a device file) is included as part of a batch
job when the job is read by a reader program.

Distributed data management (DDM) does not allow for copying from one remote
system to another remote system.

While copying records, the CPYF command can perform the following functions:

Copy from or to the first file member, a particular file member, a generic set of
members, or aii file members (FROMMBR and TOMBR parameters).

Add a member to a physical to-file if the member does not exist.

Add records to an existing file member or replace the contents of an existing
member (MBROPT parameter).

Select certain records to copy by one of the following methods:

— Selecting records by record format name when a muitiformat logical file is
copied (RCDFMT parameter).

— Specifying records starting at a relative record number and/or ending at a
relative record number (FROMRCD and TORCD parameters).

— Specifying records starting with a specific record key value and/or ending
with another specific record key value (FROMKEY and TOKEY parameters).

— Specifying the number of records to be copied (NBRRCDS parameter).

— Selecting records by the contents of one or more character positions in the
record or in a field in the record (INCCHAR parameter).

— Selecting records by the values contained in one or more fields in the
record (INCREL parameter).

— Disregard or include deleted records in the from-file during the copy if pro-
cessing the from-file in arrival sequence (COMPRESS parameter).

Print copied records and/or excluded records (PRINT parameter) in a specified
format (OUTFMT parameter).

3-2 Data Management Guide

¢ Copy records whose from-file and to-file record formats are different (FMTOPT
parameter). When formats are different, you can:

— Map fields whose names are the same in the from-file and to-file record
formats and whose field attributes are compatible (*MAP value).

— Drop fields in the from-file record format that do not exist in the to-file
record format (*DROP value).

— Copy data directly (left to right) disregarding any differences (*NOCHK
value).

¢ Copy from a source file to a data file or from a data file to a source file. If the
from-file or to-file is a device file, this function is automatic. If both files are
database files, FMTOPT(*CVTSRC) is required.

* Change sequence numbers and/or zero dates in the sequence number and date
source fields when copying to a source physical file (SRCOPT parameter).
When renumbering is to be done, the starting sequence number and the incre-
ment value can be specified (SRCSEQ parameter).

* End the copy after a specified number of recoverable errors are encountered
(ERRLVL parameter).

¢ Create the to-file as part of the copy operation (CRTFILE parameter).

Refer to the following tables (Table 3-2 on page 3-4 and Table 3-3 on page 3-5) for
a summary of what specific copy functions (using the CPYF command) can be used
for copying records by the types of files being copied from and to. The functions
with their associated parameters are listed down the left side, and the file types
(and if each can be a from-file and/or a to-file) are shown across the top. An X indi-
cates that the associated parameter is valid for the type and use of file under which
it occurs.

Chapter 3. Copying Files 3-3

Table 3-2. Summary of Copy Functions for Database Files

Database Files’

Physical Logical
Copy Function Parameter From To From To
Select files FROMFILE X X
TOFILE X
Select members FROMFILE X X
TOFILE X
Add to or replace existing records MBROPT X
Create the to-file CRTFILE? X
Print copied and/or excluded records PRINT? X X
Select by record format RCDFMT
Select by relative record number FROMRCD X X4
TORCD X x4
Select by key field value FROMKEY X X
TOKEY X X
Specify number of records to copy NBRRCDS X X
Select by character content INCCHAR X X
Select by field value INCREL X X
Process different database record formats FMTOPT X X X
Update sequence number and/or date SRCOPT X X X
Specify start value and increment SRCSEQ X X X
Print character and/or hex format OUTFMT? X X X
Maximum recoverable errors allowed ERRLVL X X X
Disregard or include deleted records COMPRESS® X X

1 DDM files will appear to act like database files, with exceptions noted in the DDM User’s Guide.

2 If the to-file does not exist before the copy operation and the from-file is a physical or logical file, the copy operation will

create a physical file as the to-file if you specified CRTFILE(*YES) on the CPYF command.

3 You can specify a program-described printer file so that the copy will produce a list with no special formatting or page

headings, or you can specify TOFILE(*PRINT) to produce a formatted list. You can specify PRINT(*COPIED) to produce a

formatted list of the copied records, and you can specify PRINT(*EXCLD) to produce a formatted list of the records excluded
by the INCCHAR or INCREL parameters. When you request a list by specifying the TOFILE(*PRINT) parameter, the OUTFMT
parameter specifies whether the data is printed in character or in both character and hexadecimal form.

4 You can specify the FROMRCD and TORCD parameter values for a logical file if it has an arrival sequence access path.

5 You cannot specify COMPRESS(*NO) if:

* The to-file member or a logical file member based on the to-file member has a keyed access path with any of the fol-

lowing attributes:

— Unique keys (UNIQUE keyword specified in the DDS)
— Floating-point key field or logical numeric key field and not MAINT(*REBLD)
— Select/omit specifications in the DDS (without the DYNSLT keyword specified) and not MAINT(*REBLD)
¢ Field-level mapping or source/data conversion is required (FMTOPT parameter).

e If an EOFDLY wait time is specified for the from-file on an Override Database File (OVRDBF) command.’

Note: To copy deleted records, the from-file must be processed in arrival sequence.

3-4 Data Management Guide

Table 3-3. Summary of Copy Functions for Device Files

Device Files
Spooled
Input Diskette Tape Printer

Copy Function Parameter From | To From | To From| To From| To
Select files FROMFILE X x3 X

TOFILE x3 X X
Select members FROMMBR X X

TOMBR X X
Add to or replace existing records MBROPT
Create the to-file CRTFILE’
Print copied and/or excluded records PRINT? X X X X X X
Select by record format RCDFMT
Select by relative record number FROMRCD

TORCD
Select by key field value FROMKEY

TOKEY
Specify number of records to copy NBRRCDS
Select by character content INCCHAR
Select by field value INCREL
Process different database record FMTOPT
formats
Update sequence number and/or date SRCOPT
Specify start value and increment SRCSEQ
Print character and/or hex format OUTFMT? X X X X X X
Maximum recoverable errors allowed ERRLVL
Disregard or include deleted records COMPRESS*
1 If the to-file does not exist before the copy operation and the from-file is a physical or logical file, the copy operation will

create a physical file as the to-file if you specified CRTFILE(*YES) on the CPYF command.

2 You can specify a program-described printer file so that the copy will produce a list with no special formatting or page
headings, or you can specify TOFILE(*PRINT) to produce a formatted list. You can specify PRINT(*COPIED) to produce a
formatted list of the copied records, and you can specify PRINT(*EXCLD) to produce a formatted list of the records excluded
by the INCCHAR or INCREL parameter. When you request a list by specifying the TOFILE(*PRINT) parameter, the OUTFMT
parameter specifies whether the data is printed in character or in both character and hexadecimal form.

3 If the from-file and to-file are diskette files, you must specify that the to-file be spooled (SPOOL(*YES)) on a CRTDKTF,
CHGDKTF, or OVRDKTF command.

4 You cannot specify COMPRESS(*NO) if:

* The to-file member or a logical file member based on the to-file member has a keyed access path with any of the fol-
lowing attributes:
— Unique keys (UNIQUE keyword specified in the DDS)
— Floating-point key field or logical numeric key field and not MAINT(*REBLD)
— Select/omit specifications in the DDS (without the DYNSLT keyword specified) and not MAINT(*REBLD)
* Field-level mapping or source/data conversion is required (FMTOPT parameter).
* If an EOFDLY wait time is specified for the from-file on an OVRDBF command.

Note: To copy deleted records, the from-file must be processed in arrival sequence.

Chapter 3. Copying Files 3-5

Basic Copy Function

File Types

As indicated in Table 3-2 and Table 3-3, you can copy from a physical or logical
database file, diskette file, tape file, or from a spooled inline file. The to-file can be
a physical database file, diskette file, tape file, program-described printer file, or
*PRINT. When TOFILE(*PRINT) is specified, the CPYSRCF command uses a different
format from the other copy commands. This format is organized to show source
information in a more readable format and for multiple member copies, the
members are copied and listed in alphabetical order.

If you are copying from a database file and the to-file does not exist, you must
specify CRTFILE(*YES) and identify the file name and library name on the TOFILE
parameter in order to create the to-file. You cannot copy from a diskette to a
diskette unless the to-file is spooled and a diskette spool writer is not active.

The from-file, to-file, and the QSYSPRT printer file (if TOFILE(*PRINT),
PRINT(*COPIED), or PRINT(*EXCLD) is specified) are opened with the SHARE(*NO)
attribute. Because the copy may not function correctly with a shared file, it will end
with an error message if the from-file, to-file, or QSYSPRT printer file is overridden
to SHARE(*YES) and the file has already been opened in the job.

If you specify TOFILE(*PRINT), the records are copied to the IBM-supplied printer
file QSYSPRT, and the list is formatted by the OUTFMT parameter.

If you do not want a formatted list or if you want to use first-character forms control
(CTLCHAR(*FCFC) on the Create Printer File (CRTPRTF) or Override with Printer
File (OVRPRTF) command), you should specify a program-described printer file
name (such as QSYSPRT) instead of *PRINT on the TOFILE parameter.

When the from-file and to-file are different types (source and data), the following is
true:

¢ |f the from-file or to-file is a device file (or a spooled inline file), the copy func-
tion will automatically add or delete the source sequence number and date
fields for each record copied.

¢ If the from-file and to-file are database files, you must specify
FMTOPT(*CVTSRC) to perform the operation. The sequence number and date
fields are added or deleted as they are for a device file, and the data part of
each record is copied without regard to the field definitions in the file record
formats. For a source physical to-file, the SRCSEQ parameter can be used to
control how sequence numbers are created if SRCOPT(*SEQNBR) is also speci-
fied.

Record Sequence

With the copy function, you can process records in a database file in either arrival
sequence or keyed sequence (if the file has a keyed access path). An arrival
sequence copy transfers records in the order in which they physically exist in the
from-file. This order is represented by relative record numbers. The relative record
number is the position where the records physically exist in storage. Because
records are always added to the end of the file, the relative record number repre-
sents the order in which records arrived in the file.

3-6 Data Management Guide

A keyed sequence copy selects and transfers records by key value from a keyed
physical file. This may result in a different physical order in the to-file. The to-file
will be a reorganized version of the from-file. The relative record number of a spe-
cific record may change when a file is copied by key value:

Relative
Record Arrival Keyed
Number Sequence Sequence
1 1011 0016
2 0762 0762
3 0810 0810
4 3729 1011
5 0016 3729

You can copy a keyed physical file in arrival sequence by specifying the FROMRCD
or TORCD parameter on the CPYF command. When you do this, the keyed
sequence access path is not used to retrieve the records in key sequence. The
records are retrieved in arrival sequence. This is helpful when the physical relative
record location in the file is significant and needs to remain the same as it is in the
original file. Specifying FROMRCD(1) is a good way to copy all the records in
arrival sequence. Copying a physical file in arrival sequence instead of keyed
sequence is also faster.

The kind of copy you run is determined by the type of from-file and the method of
selecting records to copy. In general, files are copied using their keyed sequence, if
they have one, otherwise, their arrival sequence. For more information on the
selection methods, refer to “Selecting Records to Copy” on page 3-17.

A copy from a keyed file to a keyed file usually places records at the end of the
to-file in key field order, by the from-file key, regardless of their physical order in
the from-file. But if you select records in the from-file by relative record number
(using the FROMRCD or TORCD parameters), they are physically placed at the end
of the to-file in relative record number order, regardless of their keyed sequence in
the from-file. The following example shows the result of a CPYF command speci-
fying from record 3 to record 5:

FROM-FILE TO-FILE

Relative Relative

Record Record

Number Key Number Key
1 1011 . —

2 0762 .

3 0810 | Arrival 1401 0810
4 3729 p Sequence 1402 3729
5 0016) Copy 1403 0016

RSLH715-0

When the to-file has a keyed sequence, the records appear in correct order in the
to-file when using the keyed sequence access path. A copy by relative record
number always copies by arrival sequence.

Chapter 3. Copying Files 3-7

Resending Copy File Completion Message
If the CPYF command is run from a CL program, the completion message indicating
the number of records copied is not sent directly to the system operator. You can
direct this message to the system operator by resending it (SNDPGMMSG
command) from the CL program, using the following CL program as an example:

PGM

DCL &MSGID TYPE(*CHAR) LEN(7)

DCL &MSGDTA TYPE(*CHAR) LEN(82)

CPYF FROMFILE(LIB1/XXX) TOFILE(LIB2/XXX) MBROPT(*ADD)

RCVMSG MSGID(&MSGID) MSGDTA(&MSGDTA) MSGTYPE(*COMP) RMV(*NO)

SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGTYPE(*INFO) TOMSGQ(QSYSOPR) +
MSGDTA (&MSGDTA)

ENDPGM

The copy function sends one of the following completion messages for each from-
file member/label successfully copied to the to-file:

¢ CPC2955 is the normal copy completion message.
e CPC2956 is used when COMPRESS(*NO) is specified.
e CPC2957 indicates that no records were copied.

Monitoring for Copy Errors
The escape message CPF2817 is sent to indicate many different error conditions.
Except for the empty from-file member case which is described later, when this
message is sent:

¢ A physical file is not created (even if CRTFILE(*YES) was specified on the CPYF
nrnmmand)
command).

* No members are added to a to-file that is a physical file.

* No to-file member is cleared (even if MBROPT(*REPLACE) was specified).

* The to-file is not opened, so no file is created on a diskette or tape volume. If
the to-file is spooled, no spool output file is created.

* No records are copied.

The CPF2817 escape message is always preceded by at least one diagnostic
message that indicates the specific error condition. The message identifier of the
diagnostic message which immediately precedes the CPF2817 escape is used as
message replacement data (MSGDTA parameter on the SNDPGMMSG command)
for the CPF2817 escape message. This allows you to monitor for specific error
cases from the CPF2817 escape message by using the CMPDTA parameter on the
MONMSG command.

For example, message CPF2802 is a diagnostic that indicates the from-file cannot be
found. You can monitor for just the from-file not found condition as follows:

PGM
/* The replacement text of escape
CPF2817 contains the msg ID
CPF2802 for the 'from-file not
found' condition */
CPYF FROMFILE(NOLIB/NOFILE) TOFILE(D504/KEY) +
FROMMBR (NOMBR) TOMBR(MBR1) MBROPT(*ADD)
MONMSG MSGID(CPF2817) CMPDTA(CPF2802) EXEC(SNDPGMMSG TOPGMQ(*EXT) +
MSG('File NOFILE in NOLIB not found'))
ENDPGM

3-8 Data Management Guide

Any error other than from-file not found, including any other error reported with a

CPF2817 escape message, causes a function check in this program because the

MONMSG command applies only to the CPF2817 escape when it has the compare
data from message CPF2802.

The following messages can be sent as diagnostic messages immediately followed
by a CPF2817 escape message. Some of these messages can also be sent as other
message types (such as an informational or escape message). When the message
is sent as a diagnostic message type, the message identifier appears in the replace-
ment text of the CPF2817 escape message. You can monitor the condition by using
the CMPDTA parameter on the MONMSG command:

CPF2801
CPF2802
CPF2803
CPF2804
CPF2805
CPF2806
CPF2808
CPF2810
CPF2811
CPF2812
CPF2813
CPF2814
CPF2816
CPF2819
CPF2820
CPF2821
CPF2822
CPF2823
CPF2825

Monitoring for Zero Records in the From-File

CPF2826
CPF2827
CPF2831
CPF2832
CPF2833
CPF2834
CPF2836
CPF2837
CPF2839
CPF2840
CPF2841
CPF2842
CPF2843
CPF2844
CPF2847
CPF2848
CPF2849
CPF2851

CPF2853
CPF2854
CPF2855
CPF2856
CPF2857
CPF2860
CPF2861
CPF2862
CPF2863
CPF2864
CPF2865
CPF2868
CPF2869
CPF2870
CPF2871
CPF2872
CPF2873
CPF2874

CPF2877
CPF2878
CPF2879
CPF2881
CPF2883
CPF2884
CPF2890
CPF2891
CPF2893
CPF2960
CPF2962
CPF2963
CPF2965
CPF2969
CPF9807
CPF9808
CPF9820
CPF9830

There are some special considerations for copy when the from-file is a physical or
logical file and one or more members to be copied are empty. A member is consid-

ered empty in the following cases:

e |[f COMPRESS(*NO) is specified on the CPYF command and the from-file

member contains no records.
e |f COMPRESS(*YES) is specified or assumed for any copy command and the
from-file members contain no undeleted records.

When the to-file is a printer file (including *PRINT), or when the to-file is a physical
file and MBROPT(*ADD) is specified, empty from-file members are copied because
no existing data will be destroyed. Each member copied is identified by a normal

copy completion message. If the to-file is spooled, an empty spool output file is

produced for each empty from-file member. If the CPYF command PRINT parameter

specifies *COPIED or *EXCLD, the empty members are shown in the lists with no

records printed.

Chapter 3. Copying Files

3-9

An empty from-file member is never copied to a diskette or tape file, or to a physical
file when MBROPT(*REPLACE) is specified. Empty from-file members are skipped
for these types of to-files, and a CPF2869 message is sent (as either an informa-
tional or diagnostic message) to identify each empty member. The empty members
are skipped to avoid destroying existing data. When an empty from-file member is
skipped, the following considerations apply:

¢ A tape or diskette file is not produced on the output volume. If the diskette file is
spooled, no spool output file is created.

e An existing to-file physical file member is not cleared.

¢ |f the to-file does not exist and CRTFILE(*YES) was specified on the CPYF
command, a physical file is created.

e |f the to-file is a physical file and the to-file member does not exist, a member is
added to the file.

¢ |f the CPYF command PRINT parameter specifies<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>